Overblog Suivre ce blog
Administration Créer mon blog
22 juillet 2017 6 22 /07 /juillet /2017 18:00
le robot Curiosity

le robot Curiosity

  

   Au cours du temps, un certain nombre de billets parus dans la version Face Book du blog a concerné le petit robot Curiosity qui, encore aujourd’hui, continue à vaillamment arpenter le sol de la planète rouge. Je me propose d’afficher chronologiquement les principaux textes concernant la petite machine avant d’étudier cette dernière plus en détail et chercher à déterminer ce que l’on peut encore espérer d’elle..

 

 

 

BON ANNIVERSAIRE CURIOSITY ! (7 août 2013)

 

   Le 6 août 2012, à 5h31 UTC, le robot Curiosity de la NASA s'est posé dans le cratère Gale de la planète Mars, au terme d'un voyage de  près de neuf mois. Après avoir subi une panne de sa mémoire frappée par des rayons cosmiques, perdu du

robot martien Curiosity
premiers pas sur Mars

temps avec des "dunes qui bougent" et affronté une tempête solaire, la courageuse petite machine s'est mise à creuser le sol martien... pour découvrir que ce dernier était parfaitement compatible avec l'apparition de la Vie... Compatible seulement parce que de Vie, pour le moment, il n'y en a aucun signe. Il faut dire que si Mars a renfermé de l'eau (indispensable au développement de la Vie telle que nous la connaissons), c'était il y a très très longtemps et probablement pendant une durée de temps insuffisante (Il a fallu près d'un milliard d'années pour que la Vie apparaisse sur Terre).


   Après avoir parcouru un peu plus de 1 km en un an, Curiosity va à présent accélérer la cadence pour atteindre et escalader le centre du cratère situé à environ 10 km de l'endroit où il se trouve. Rappelons-nous quand même que les ordres provenant de la Terre pour le faire bouger mettent, selon les positions respectives des deux planètes, entre 3 et 21 minutes pour lui parvenir : il est donc impossible de communiquer avec le robot en temps réel et tout doit être programmé. Ce qui rend encore plus extraordinaire l'exploit que représente cette mission !

Photo : NASA

 

 

 

DES NOUVELLES DE CURIOSITY (28 janvier 2014)

 

   Vous vous en souvenez peut-être, au mois d'août dernier, nous avions évoqué l'anniversaire du module martien Curiosity qui était alors en route vers le centre du cratère Gale où il s'était posé. Eh bien, son périple a continué.

   Un peu moins d'un mois après son atterrissage sur Mars, ses caméras avaient mis en évidence des espèces de galets aux formes arrondies et lisses qui ne pouvaient provenir que de l'ancien lit d'une rivière. Dès lors, c'était une certitude : Mars, jadis, avait abrité de l'eau et durant longtemps, probablement des millions d'années...

   Curiosity s'est ensuite dirigé vers une dépression dénommée par les scientifiques Yellowknife Bay où il a mis en évidence une zone de sédiments, très certainement le fond d'un ancien lac. Le robot est capable d'analyser les roches qui l'entourent en leur "tirant" dessus avec un laser : il ne lui suffit alors plus que d'analyser la lumière émise en retour pour connaître la

robot martien Curiosity
la planète Mars vue par Curiosity

composition de ces roches. Qu'a-t-il donc trouvé par cette méthode ? Rien de moins que les éléments nécessaires à la vie (de type terrestre) : carbone, hydrogène, oxygène, azote, soufre et phosphore... On peut en déduire que Yellowknife Bay était, il y a environ 3 milliards d'années, un lac d'eau douce de 5 km de largeur pour une cinquantaine de km de longueur et que des rivières descendant des parois du cratère venaient régulièrement l'alimenter.

   Notre vaillant petit robot continua son analyse jusqu'à apporter la preuve que cette eau du passé était très peu salée, pas trop chaude et surtout non acide. Bref, une eau dans laquelle - comme ce fut le cas sur Terre - la Vie aurait (a ?) pu apparaître. Et qui sait si des bactéries...

   Bon, ensuite, cela ne s'est pas passé comme sur notre planète, probablement parce que l'eau martienne s'est (trop) rapidement évaporée, avant que la Vie ne puisse se développer. Il n'empêche, c'est la première fois que l'on met en évidence que des conditions nécessaires à l'apparition de la Vie ont existé sur une autre planète que la nôtre. Et c'est grâce à Curiosity qu'on en a la preuve...

   On lui souhaite donc de continuer à nous renseigner longtemps sur ces terres lointaines et, on l'espère, de nous fournir bientôt un nouveau bulletin d'information !

Photo : w3sh.com

 

 

 

CURIOSITY (suite) (12 septembre 2014)

 

   Le vaillant petit robot continue son périple martien. Il y a quelques jours, les scientifiques ont eu peur pour lui car on l'a cru un temps ensablé mais, heureusement, la petite machine a réussi à se désengager de ce terrain hostile. La voici à présent

robot martien curiosity
Mars : Pahrump Hills

au pied du mont Sharp (une montagne plus haute que le Mont Blanc puisque son sommet culmine à 5500 mètres), but de son voyage. Sa mission actuelle : étudier la base de la montagne (un endroit nommé "Pahrump Hills") et démontrer la nature hydratée des roches qu'y s'y trouvent, c'est à dire des roches formées en présence d'eau. Si son enquête est positive, ce sera la mise en évidence d'un élément fondamental : la présence d'eau dans un passé lointain de la planète et donc la possibilité que, à un moment de la vie de Mars, la Vie ait pu y exister ! Curiosity n'est plus qu'à 200 mètres de cet endroit qui sera atteint dans quelques jours.

   Le terrain à prospecter est théoriquement moins agressif que les zones rencontrées jusqu'à maintenant et c'est tant mieux : en effet, les roues du robot (pourtant fort résistantes) ont grandement souffert de sa traversée dans la zone précédente puisqu'elles sont à présent percées de multiples trous provoqués par les pierres acérées rencontrées lors de cette première partie du voyage.

   Ensuite, il lui faudra entreprendre l'ascension proprement dite de la montagne : Curiosity aura alors parcouru presque 10 km sur Mars (en environ 2 ans) mais il est toujours présent, preuve de sa ténacité et de son endurance !

photo : NASA

 

 

 

 

UN COUCHER DE SOLEIL TRÈS SPÉCIAL (18 mai 2015)

 

robot martien curiosity
coucher de Soleil sur Mars

 

 

   La photo ci-dessus nous montre un coucher de soleil. Toutefois, en observant de près le cliché, on s'aperçoit qu'il n'est pas tout à fait comme on aurait pu s'y attendre : il reflète une certaine étrangeté...

   C'est que ce coucher de soleil a été pris depuis la planète Mars ! Vous vous souvenez de notre petit robot Curiosity que nous avions laissé au bas du mont Sharp, dans le cratère Gale ? Eh bien, il continue sa lente et patiente ascension... et ses diverses observations.

   Curiosity a pris cette photo d'un coucher de soleil martien le 15 avril dernier, fêtant alors son 956ème jour de présence sur Mars. On y observe que le Soleil y paraît plus petit que depuis laTerre ce qui est normal puisqu'il est 50% plus loin. Quant à la couleur bleue dominante sur le cliché, elle est probablement due à de la poussière en suspension qui diffracte la lumière : les spécialistes de la NASA nous disent en effet que la photo a été prise juste après une violente tempête, ce qui explique le phénomène. En temps normal, le ciel aurait dû être rouge-orangé...

   Je pense que Robert Bradbury, l'auteur des "chroniques martiennes", aurait aimé contempler cette image, lui qui inventa tout un univers martien à la seule force de son imagination.

Photo NASA

 

 

 

CURIOSITY TOUJOURS FIDÈLE (8 mai 2016)

 

    En juin 2015, à l'occasion de ses 1000 jours de présence sur Mars, nous avions évoqué le fidèle petit robot et sa longue quête sur la planète rouge... mais, depuis, où en est-il ?

   Eh bien, il poursuit vaillamment son bonhomme de chemin, en direction du mont Sharp (appelation NASA), également baptisé Aeolis Mons (par l'Union Astronomique Internationale) sa destination (qu'on peut apercevoir sur la photo à droite, en haut). Il est encore loin de son objectif mais on connait son opiniâtreté !

   En fait, la principale mission du petit robot est d'évaluer les chances d'apparition d'une vie martienne, notamment bactérienne, et c'est la raison pour laquelle, après avoir exploré

robot matien curiosity
Curiosity en route vers Aeolis

le plateau nommé Nautkluft (à gauche de la photo), un endroit tout particulièrement tourmenté, il se dirige à présent vers le Mont Aeolis à la base duquel le sol est censé renseigner les scientifiques sur la présence de traces d'eau et sur le temps qu'elle séjourna sur la planète rouge avant de s'évaporer.

   Toutefois, la marche de Curiosity sur le plateau Nautkluft n'a pas été sans dommages puisque les roues en aluminium de la petite machine sont particulièrement abimées et on ne sait pas vraiment s'il pourra continuer longtemps. Une chose est sûre : il a accompli jusqu'à présent toutes les tâches qui lui étaient assignées et les explorations actuelles (et à venir) sont un bonus dont même la NASA n'aurait pu rêver ! On lui souhaite donc bonne continuation...

photo : Curiosity en avril 2016 (crédits NASA)

 

 

 

 

ET OÙ EN EST CURIOSITY ? (24 septembre 2106)

 

   Que devient notre petit robot martien dont nous avons donné à plusieurs occasions des nouvelles ? Eh bien, il continue son exploration de Mars et vient d’adresser à la Terre des photos tout à fait spectaculaires sur le relief de cette planète si fantasmée par les écrivains de science-fiction.

   Il est, vous vous en souvenez peut-être, au pied d’une 

montagne, le mont Sharp (Ae

olis) et dans un méandre de massifs rocheux, de buttes pierreuses et de collines à sommets plats qui rappellent étrangement le Far-West américain…

   En fait, ces roches dures et pointues sont composées de grains de sable qui ont été agglomérés par les vents puis cimentés avant d’être érodés par d’autres mécanismes éoliens, d’où cet aspect acéré, pointu et pourtant lamellaire.

   Curiosity va bientôt quitter ces endroits tourmentés pour commencer l’ascension du Mont Sharp lui-même, toujours à la recherche de rochers qui se seraient formés en présence d’eau liquide…

   Cela fait déjà trois ans (presque quatre) que le robot de la NASA s’est posé sur la planète rouge et, durant tout ce temps,

il a parcouru plus de 14 km. Cela peut sembler peu à nos cerveaux de terriens mais c’est en réalité immense parce que c’est la première fois qu’une machine fabriquée par l’Homme explore de si lointains territoires, des terres jusque là forcément inconnues puisque hors de notre planète.

Images : récentes images de MARS par Curiosity (sources : NASA)

 

 

 

 

LES DUNES DE MARS (1er avril 2017)

 

robot martien curiosity
des dunes plutôt étranges

 

   Il y a quelques mois, Curiosity, le petit robot courageux qui explore la planète rouge depuis des années, s'est intéressé aux dunes assez bizarres de cet endroit désolé. Ou plutôt les scientifiques qui guident le périple de Curiosity.

   Ceux-ci, en effet, avaient repéré une dune étrange appelée Namib, située dans le champ de sable et de poussières du cratère Gale dans lequel se promène la petite machine. C'était la première fois qu'on observait de près une dune de sable extra-terrestre. Vous allez me dire qu'une dune de sable est une dune de sable où qu'elle se trouve et qu'il n'y a pas de raison de découvrir des différences. Eh bien si : les crêtes des dunes martiennes sont bien particulières et séparées de trois mètres... exactement comme celles qui dorment sous nos océans...

   Les raisons ? Les scientifiques pensent d'abord à la gravité qui est bien plus faible que celle de la Terre (mais elle est très forte sous les océans terrestres). D'autres facteurs interviennent donc : notamment la vitesse et la pression des vents qui, sur Mars, sont très spéciaux. Sur l'image ci-dessus, on peut voir les crêtes dunaires assez obscures de Namib avec en arrière plan des roches couvertes de la poussière orange martienne habituelle (et une coulée de cailloux sur la droite).

   Curieusement, peu après avoir pris cette photo, Curiosity s'est mis en mode "sécurité", c'est à dire qu'il s'est volontairement déconnecté et est entré en sommeil durant trois mois avant de reprendre tranquillement son exploration du cratère Gale.

Image Crédit : NASA, JPL-Caltech, MSSS

 

 

 

 

SITUATION ACTUELLE DE CURIOSITY (juillet 2017)

 

   En 2017, Curiosity continue son exploration du cratère Gale ce qui, au passage, prouve l'incroyable longévité de cet outil (sur laquelle nous aurons l'occasion de revenir) : on trouvera ci-après une carte du théâtre d'opération du robot afin de saisir plus aisément son exploit.

 

robot martien curiosity
le cratère Gale et le mont Sharp (ou Aeolis)

 

 

   En ce moment (juillet 2017), Curiosity s'approche d'un endroit baptisé Vera Rubin Ridge (voir carte ci-après) dont les scientifiques souhaiteraient connaître la composition. Contrefort éloigné du mont Sharp (qui, je le rappelle, culmine à plus de 5 500 m d'altitude), il s'agit en réalité d'une sorte de mur que les experts de la NASA décrivent haut comme un immeuble de sept étages sur une longueur de 5,6 km et qui est composé de strates dont ils aimeraient savoir si elles ont été générées par les vents martiens ou par l'eau d'un ancien lac (il faut préciser que les observations faites plusieurs mois plus tôt sur le site dit des buttes de Murray iraient plutôt vers cette seconde hypothèse)

 

.

robot martien curiosity
le Vera Rubin Ridge qui intéresse actuellement Curiosity

 

Comme le dit elle-même la NASA : "Durant l’année qui a suivi son atterrissage le 5 août 2012, Curiosity a réalisé son objectif principal en démontrant que, des milliards d’années auparavant, un lac martien offrait les conditions qui étaient favorables au développement d’une vie microbienne. Curiosity a depuis traversé une diversité d’environnements où à la fois l’eau et les vents ont laissé leurs empreintes. L’exploration à venir de la falaise Vera Rubin et des couches supérieures d’argile et de phosphates offrira l’opportunité d’en savoir encore plus sur l’histoire et l’habitabilité de la planète Mars à ses débuts ."

 

robot martien curiosity
le périple de Curiosity sur Mars avec, en pointillé, son trajet en 2017 (sources : usinenouvelle.com)

 

 

 

CURIOSITY, UN ROBOT TAILLÉ POUR L'EXPLORATION

 

 

   Lorsqu’on veut explorer une planète, il existe deux types d’explorateurs au sol : les atterrisseurs qui sont fixes et les rovers, mobiles, dont le rôle est longtemps resté modeste puisqu’ils se contentaient de valider sur le terrain les observations faites par les engins restés en orbite.

 

   De nombreuses sondes ont déjà été lancées vers Mars et certaines sont arrivées en bon état ; de ce fait, un grand nombre d’engins se trouve sur place (certains datant de l’ère soviétique), la plupart actuellement immobilisés en fin de mission (qui n’a parfois jamais commencé). Le plus gros des

curiosity robot martien
différentes sondes près de Curiosity (sources : Wikipedia)

représentants terrestres sur place est incontestablement Curiosity qui pèse 899 kg (alors que la sonde dans son ensemble avoisinait les 3,9 tonnes). Il est de plus bien équipé avec 10 instruments scientifiques majeurs (75 kg environ) lui permettant de rechercher la présence d’eau, d’analyser les roches et les minéraux et, bien sûr, de prendre des photos en haute définition.

 

   Le poids de Curiosity a posé un problème aux scientifiques pour l’atterrissage. En effet, l’engin était trop lourd pour être parachuté durant les dernières dizaines de mètres (un parachute freinera néanmoins le début de sa descente) et, de la même façon, il était impossible de se servir de coussins gonflables comme cela avait été choisi pour d’autres missions. Impossible non plus de se servir d’un étage porteur comprenant des moteurs fusées : cette solution est adaptée aux atterrisseurs fixes (comme les sondes Vikings) mais Curiosity, lui, devait pouvoir se dégager pour accomplir son exploration. On

robot martien Curiosity
largage du robot par l'étage de descente (sources : Wikipedia)

eut donc recours à une descente propulsée et à un atterrissage grâce à un étage de descente, c’est-à-dire, une sorte de plateau garni de fusées de guidage mais susceptible de se séparer du rover en le déposant au dernier moment délicatement au moyen de trois puissants câbles. Cet étage devait assurer une dépose la plus douce possible puis repartir immédiatement afin d’aller s’écraser un peu plus loin. Un système compliqué à manœuvrer, surtout si l’on se souvient que la communication met plusieurs minutes entre Mars et la Terre (entre 8 et 48 minutes pour un aller-retour selon les positions des planètes l’une par rapport à l’autre). Quoi qu’il en soit, une fois le rover posé (et en principe immédiatement opérationnel), il ne suffisait plus que de s’assurer qu’il ne se trouvait pas en situation périlleuse (comme, par exemple, le sera la sonde Rosetta bien plus tard sur la comète Tchouri) grâce aux capteurs embarqués. Bien que Curiosity puisse escalader des pentes de 50° et que sa garde au sol soit de 60 cm, un grand nombre de vérifications fut effectué à ce stade : analyse du sol, qualité des télécommunications avec la Terre, déploiement du grand mât télescopique et de l’antenne… Curiosity ne fut autorisé à se déplacer qu’au bout de 7 jours.

 

 

 

ET L'AVENIR ?

 

   Il faut en convenir : Curiosity était fait pour durer. À l’origine, la mission qu’on lui avait confiée devait se prolonger une année martienne, c’est-à-dire 669 sols (jours solaires martiens) ce qui correspond à 687 jours solaires terrestres, soit un peu plus de 22 mois. Nous sommes en juillet 2017 - soit pratiquement cinq ans après son atterrissage sur Mars - et le robot semble toujours en très bonne forme : quel est son secret ?

 

   Il faut tout d’abord se féliciter de la qualité du matériel embarqué à bord de Curiosity mais aussi du fait que ses

Curiosity : pas moins de 17 caméras ! (sources : Wikipedia)

concepteurs, prévoyants, avaient pratiquement doublé la plus grande partie de l’informatique et cela fut terriblement utile : dès le début de la mission, l’ordinateur principal de Curiosity fut neutralisé suite à un dysfonctionnement de sa mémoire flash endommagée par des rayons cosmiques. Et c’est l’ordinateur de secours qui prit le relais…

 

   Un deuxième point important est l’assiduité de l’équipe au sol. En effet, traditionnellement pour une mission de ce genre, la première année, les scientifiques restent « au contact » 24 h sur 24 avant de progressivement lever le pied les mois suivants : Curiosity est certainement un des atouts-maître de la NASA ce qui explique qu’il ne fut pas oublié.  Et que son activité reste primordiale pour l’agence américaine.

 

   Il est également important de signaler que les années passant, notre compréhension de l’écologie de la planète rouge est allée en grandissant ce qui n’a pu que profiter à Curiosity.

 

   Il reste tout de même que la longévité surprenante du petit robot est certainement principalement dû à son mode de propulsion : en effet, Curiosity dispose d’une énergie indépendante de la lumière et de l’ensoleillement, au contraire de la plupart de ses prédécesseurs, au premier rang desquels Opportunity, toujours actif par périodes mais vivant ses derniers moments en énergie. Afin d’échapper aux aléas des panneaux solaires (fragiles, ne fonctionnant que le jour et quasi inactifs durant l’hiver), la NASA a choisi pour Curiosity un générateur nucléaire, en l’occurrence un générateur thermoélectrique à radio-isotopes utilisant du plutonium enrichi. Du coup, Curiosity dispose de 2,7 kWh/j contre 0,8 kWh/j en moyenne pour Opportunity (beaucoup moins pour celui-ci aujourd’hui).

 

 

   Curiosity est une superbe petite machine dont la durée de vie est bien supérieure à celle prévue au début de l’expérience. On peut même penser, compte-tenu de sa source d’alimentation stable et durable, qu’il a encore bien des mois d’exploration devant lui. À la condition qu’il continue  à progresser avec

robot martien curiosity

prudence. En réalité, l’informatique du robot ne lui permet pas de prendre des décisions majeures dans son exploration : c’est l’équipe sur Terre qui décide de tout et, bien entendu, puisque les communications entre la Terre et Mars mettent de nombreuses minutes, l’avancée est lente. Lente mais régulière. Et on peut penser que Curiosity nous réserve encore des informations capitales sur cette planète qui intéresse tellement les Terriens qu’ils ont presque décidé d’y envoyer une équipe humaine dans quelques années.

 

 

Sources :

1. Wikipedia France et en.wikipedia.org

2. Science et Vie.com

3. Encyclopaediae Britannica

4. https://www.astronomes.com

5. revue Ciel et Espace (https://www.cieletespace.fr/)

 

Mots-clés : en construction

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

 

Partager cet article

Repost 1
Published by cepheides - dans astronomie
commenter cet article
18 juillet 2015 6 18 /07 /juillet /2015 18:18

 

 

 

 

     Si d’aventure on le leur demandait, je crois que beaucoup de nos contemporains ne sauraient pas réellement situer la ceinture de Kuiper dans l’espace, pourtant tout le monde – ou à peu près – sait en réalité ce qu’elle est puisqu’il s’agit de la périphérie de notre système solaire, là où se situe la planète naine Pluton. La sonde New Horizons étant arrivée ces jours-ci à proximité de cette petite planète, il est intéressant de revenir sur cette part de notre système solaire que nous connaissons si mal et ce d’autant que l’hypothèse d’une planète fantôme susceptible d’y exister a récemment repris des couleurs.

 

 

 

La ceinture de Kuiper

 

 

     La ceinture de Kuiper, c’est loin, très loin, au-delà de la huitième planète du système solaire, Neptune, qui est déjà fort loin de nous puisque située à 30 unités astronomiques (ua). Rappelons qu’une ua, unité de mesure couramment utilisée en astronomie, correspond à la distance Terre-Soleil soit environ 150 millions de km (très exactement : 149 600 000 km). Neptune est donc à environ 4,5 milliards de km ce qui est une distance difficile à concevoir : disons pour mieux en saisir la réalité que la lumière du Soleil met 4 heures et 10 minutes pour l’atteindre alors qu’elle ne met que 8 minutes pour éclairer notre planète. C’est donc dans ce lointain espace que commence la ceinture de Kuiper et on estime qu’elle s’étend jusqu’à environ 55 ua.

 

     Dans cet endroit, si faiblement éclairé par le Soleil et où celui-ci apparaît à peine plus gros qu’une étoile, les scientifiques estiment que se trouvent des objets multiples témoignant des premiers instants du système solaire : planètes naines comme Pluton et son satellite Charon, planétésimaux, comètes dont certaines viennent avec régularité visiter la partie plus centrale du système solaire, débris divers mal identifiés, poussières en tous genres, en fait tous des fragments du disque protosolaire qui, à cet endroit, n’ont pas réussi à former de véritables planètes.

 

     Il ne semble pas toutefois que ces objets, du plus petit (quelques grammes) au plus grand possible ici (moins de 3000 km de diamètre), soient distribués au hasard : l’essentiel de ces débris se situe entre 40 et 48 ua en raison d’un phénomène de résonance orbitale. Oui mais c’est quoi, la résonance orbitale ? Eh bien, pour faire simple, disons que, lorsque deux corps gravitent autour d’un troisième, ils s’influencent mutuellement jusqu’à ce que leurs périodes de révolution aient des rapports de fraction entière simple. Prenons un exemple : Pluton, la planète naine, est influencée par Neptune selon une résonnance 2 : 3 ce qui veut dire que chaque fois que Neptune tourne trois fois autour du Soleil, Pluton tourne deux fois autour de lui… De la même façon, la présence de Neptune a structuré la ceinture de Kuiper et les objets qu’elle est susceptible de contenir en en modifiant les orbites et les trajectoires jusqu’à une distance de 42 ua à partir de laquelle son influence devient négligeable : c’est donc à cette distance que les objets peuvent exister sans que leurs orbites soient modifiées et c’est également là que l’on trouve plus des 2/3 des objets de la ceinture.

 

   Curieusement, la ceinture de Kuiper s’interrompt brutalement, vers 50 ua, avec la disparition des objets de grande taille et il est difficile de savoir s’il s’agit du début d’une lacune très large ou effectivement le bord extérieur de la dite ceinture : les scientifiques qui n’ont pas d’explications pour ce phénomène l’ont appelé « la falaise de Kuiper ». Signalons enfin que ce mécanisme de ceinture de débris n’est pas propre à notre système solaire puisqu’un phénomène analogue a été mis en évidence pour une vingtaine d’étoiles.

 

 

 

Le nuage d’Oort

 

 

     Ce sont les comètes qui ont permis de comprendre ce qu’était l’espace au-delà de la ceinture de Kuiper. Déjà, Halley (celui qui donna son nom à l’une des plus célèbres d’entre elles) avait remarqué que les comètes revenaient éclairer nos cieux nocturnes de façon régulière et qu’elles devaient bien venir de quelque part. C’est l’astronome hollandais Oort qui, dans les années 1950, avança l’hypothèse que ces comètes régulières provenaient d’un lointain espace situé aux confins de notre système solaire. En effet, expliquait-il, on sait bien que, après plusieurs passages près du Soleil où elles perdent à chaque fois une partie de leur substance, les comètes sont détruites. Pourtant, on en voit toujours alors que depuis la formation du système solaire, il y a 4,6 milliards d’années, elles auraient dû toutes disparaître : c’est donc qu’il y a un réservoir de matière quelque part, un endroit qui recèle des milliards de noyaux cométaires… Oort sélectionna une quarantaine de comètes dont, après de savants calculs (répartition de l’inverse des demi-grands axes cométaires), il estima la provenance : entre 40 000 et 150 000 ua (soit à peu près de 0,6 à 2,4 années-lumière) ; le bord externe de cet espace est à l’extrême limite d’influence du Soleil, à plus du quart de la distance qui nous sépare de l’étoile la plus proche, la naine rouge Proxima (ou alpha) du Centaure… qui pourrait, elle-aussi, posséder son propre « nuage d’Oort » formant, pourquoi pas ?, un continuum avec celui du Soleil.

 

     Certains scientifiques ont avancé que le Soleil aurait un compagnon caché quelque part au-delà du nuage d’Oort, peut-être une naine brune (une étoile n’ayant pu « s’allumer » en raison de sa trop faible taille) ou une géante gazeuse située en dehors du nuage d’Oort mais qui y pénétrerait tous les 26 millions d’années entraînant alors un bombardement intense par des météorites des parties centrales du système solaire et donc de la Terre. On a même donné à cette hypothétique planète le nom de Némésis (du nom de la déesse de la colère des Dieux dans la mythologie grecque) mais aucune preuve de son existence n’a jusqu’à présent été trouvée. Néanmoins, une telle idée - une planète lointaine encore inconnue - peut-elle avoir des bases scientifiques ?

 

 

 

Une planète mystérieuse

 

 

    Parlant du nuage d’Oort, nous venons d’évoquer des distances de plusieurs milliers d’ua, un endroit si éloigné qu’aucune lumière provenant du Soleil n’y arrive jamais : là-bas, le Soleil est une étoile parmi les autres. De ce fait, n’importe quel objet, même de taille conséquente, pourrait s’y cacher sans qu’il soit visible de la Terre. Mais y a-t-il vraiment une planète à l’extrémité du nuage d’Oort ? Une planète qui aurait pu être rejetée là-bas, peu après la formation du système solaire, lors de, par exemple, la migration d’une des géantes gazeuses de notre système ? Depuis 200 ans environ, les scientifiques discutent du sujet, tantôt qualifié de « littérature de science-fiction », tantôt présenté comme étant la réponse aux indiscutables anomalies constatées par la communauté scientifique.

 

     Tout a en fait démarré avec la découverte d’Uranus en 1781 par Herschel ou plutôt par la constatation par Urbain Le Verrier, une soixantaine d’années plus tard, d’anomalies dans l’orbite de cette planète qui lui laissaient supposer qu’une autre planète existerait perturbant cette trajectoire. Il fit ses calculs et désigna un point du ciel où, à l’heure dite, on découvrit effectivement… Neptune.

 

     Toutefois, l’histoire ne s’arrête pas là car si Neptune explique bien certaines des anomalies constatées dans les mouvements d’Uranus, il reste des perturbations résiduelles qui ne peuvent être éliminées. On crut détenir l’explication du phénomène en 1930 avec la découverte de Pluton, alors baptisée la neuvième planète du système solaire. Mais l’astre est trop petit, trop peu influent pour expliquer les anomalies de la géante gazeuse (Pluton a été reléguée au rang de planète naine en 2006 ce qui fait que le système solaire ne compte à nouveau plus que huit planètes). Encore raté, donc.

 

     Il faut attendre 1993 et la mission Voyager 2 pour reparler de ces anomalies : la sonde ayant survolé Neptune en 1989, les calculs sont refaits et la masse de la planète est diminuée de près de 0,5 % ce qui permet d’expliquer les anomalies et, du coup, plus besoin d’une planète inconnue… On croit avoir enfin définitivement enterré l’hypothèse de la planète mystérieuse, baptisée planète X : il n’en est rien.

 

       En 2004, la découverte d’un planétoïde d’environ 1000 km de diamètre baptisé Selma avait intrigué les scientifiques car le point de son orbite le plus proche du Soleil est quasiment aligné sur le plan de l’écliptique des autres planètes. Le plan de l’écliptique ? Il s’agit du plan de l’orbite terrestre autour du Soleil ; disons-le autrement : lors de la formation des planètes, celles-ci se sont toutes influencées de façon à ce que leurs orbites soient peu ou prou alignées dans une même zone autour de leur étoile et c’est cette zone circulaire que l’on appelle le plan de l’écliptique Oui, mais pourquoi Selma - qui est loin de toute influence massive des planètes centrales (il est hors de portée de l’attraction de Neptune) - a-t-il lui aussi un tel alignement ? Eh bien, répondirent bien des astronomes, c’est tout simplement dû… au hasard. Parce que le hasard, ça existe aussi, voyez-vous  ! On en resta donc là…

 

       … jusqu’en 2012 où deux astronomes américains mirent en évidence un gros astéroïde de 450 km de diamètre, appelé VP113 qui présente lui aussi une orbite alignée sur ce même plan de l’écliptique. Du coup, on revoit sérieusement le problème : un objet, passe encore, mais deux ça fait désordre. S’il ne s’agit pas d’une erreur d’interprétation (et il ne semble pas que ce soit le cas), cela veut dire qu’un objet massif a influencé le positionnement spatial de ces objets et ce ne peut être Neptune, bien trop centrale : on repense évidemment à la planète X…

 

     Or cette hypothèse d’une planète massive rejetée en périphérie de son système solaire et qui tournerait autour de son étoile à l’extrémité de sa zone d’influence a déjà été mise en évidence : elle concerne une exoplanète nommée Fomalhaut b qui, comme son nom l’indique, orbite autour de Fomalhaut, une étoile blanche de la séquence principale située à 25 années-lumière de la Terre, dans la constellation du Poisson Austral. Et cette exoplanète, une géante gazeuse, située à environ 120 ua de l’étoile a été suspectée… en raison de l’organisation particulière d’un disque de débris. Cherchée durant 8 ans, son existence ayant été niée à plusieurs reprises, on a finalement réussi à la mettre en évidence : c’est même la première exoplanète détectée directement par la photographie optique

 

     Alors, ce qui est vrai pour Fomalhaut, pourquoi cela ne le serait-il pas pour le Soleil ?

 

 

Pluton et au delà

 

     La ceinture de Kuiper et ce qui la prolonge sont vraiment du domaine de l’inconnu. La zone est lointaine et donc très mal éclairée par le Soleil, rendant de ce fait son étude à partir de la Terre très délicate. Même le télescope spatial Hubble a du mal avec cet endroit éloigné et glacé (il est vrai qu’il a surtout été conçu pour voir… beaucoup plus loin, aux confins de l’Univers). C’est dommage car la ceinture de Kuiper et après elle le nuage d’Oort sont des lieux passionnants pour ceux qui s’intéressent aux origines de notre système solaire : en effet, tout, là-bas, est resté « en l’état », c’est-à-dire dans la même situation et avec les mêmes éléments que lors de la formation du système, il y a 4,5 milliards d’années. Étudier ce monde lointain est capital pour la connaissance de nos origines…

 

     Heureusement, il y a les sondes. Justement, l’une d’entre elles, New Horizons, est en train de commencer l’exploration de ces mondes glacés et nous a déjà gratifié de photos exceptionnelles de Pluton et de son satellite Charon : dans le meilleur des télescopes, Pluton nous apparaissait comme un petit point blême et voilà que la sonde nous donne les détails de ses montagnes, de ses différences de couleurs, de son absence surprenante de cratères, etc. mais New Horizons va très vite et, déjà, elle s’éloigne pour explorer d’autres objets.

 

     Les comètes qui viennent des bords du système solaire sont les témoins des débuts du système ? Eh bien, la sonde Rosetta et son module Philae, non seulement prend des photos de la comète Schuri mais elle pourra probablement recueillir des prélèvements dont les scientifiques attendent énormément… 

 

     Les sondes automatiques sont probablement l’avenir pour l’exploration de ces endroits si inhospitaliers et l’aventure ne fait que commencer  !

 

 

 

Sources

 

1. fr.wikipedia.org

2. revue Science & Vie, 1162, juillet 2014

3. Encyclopaedia Britannica

4. Ciel des Hommes (www.cidehom.com)

 

 

Images

 

1. Pluton par la sonde New Horizons, le 13 juillet 2015 (sources : NASA)

2. ua (sources : moulindesetoiles.wordpress.com)

3. ceinture de Kuiper (sources : lastronimieselaraconte.fr)

4. Neptune (sources : le-système-solaire.net)

5. nuage d'Oort (sources : alex-bernardini.fr)

6. Urbain Le Verrier (sources : en.wikipedia.org)

7. plan de l'écliptique (sources : asctoussaint.sa.free.fr)

8. sonde New Horizons (sources : geeksandcom.com)

(pour lire les légendes des illustrations, passer le curseur de la souris dessus)

 

 

Mots-clés : sonde New Horizons - unité astronomique (UA) - Pluton et Charon - disque protosolaire - résonance orbitale - falaise de Kuiper - nuage d'Oort - Jan Oort - planète Némésis - Urbain Le Verrier

(les mots en blanc renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

 

1. origine du système solaire

2. les sondes spatiales Voyager

3. la formation des planètes  

4. planètes extrasolaires

5. distances et durées des âges géologiques

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
6 janvier 2015 2 06 /01 /janvier /2015 18:17

sursaut-gamma.jpg

 

 

 

 

     Le jour de Noël 2010, le satellite Swift - qui observe le cosmos depuis 6 ans à la recherche de ces énormes émissions de lumière que l’on appelle des sursauts gamma – détecte une énorme bouffée de photons (particules de lumière) dans la direction de la galaxie d’Andromède, notre plus proche voisine. Il faut toutefois se dépêcher de l’observer car on sait que ces éruptions brutales ne durent pas longtemps : de une à quelques dizaines de secondes au maximum. Swift communique instantanément les coordonnées de l’émission lumineuse aux télescopes terrestres afin qu’ils puissent rapidement « verrouiller » leur cible et débuter leurs observations puis il continue la surveillance du phénomène. Sauf que le temps passe, que les dizaines puis les centaines de secondes s’écoulent sans que le flux de photons ne faiblisse. Au total, le sursaut gamma dure presque 30 minutes (et peut-être même beaucoup plus car Swift est obligé de passer derrière la Terre - dont il fait le tour - en perdant forcément la liaison). IL y avait des sursauts gamma courts (une seconde) et des longs (plusieurs dizaines de secondes) : voilà qu’une nouvelle forme de ce phénomène apparaît, les sursauts ultra-longs. De quoi s’agit-il donc ? Que s’est-il passé du côté de la galaxie voisine de la nôtre ? Et, d’une façon générale, ces sursauts gamma que l’on peut qualifier d’événements les plus violents de l’Univers, c’est quoi en définitive ?

 

 

Une découverte récente

 

    Les sursauts gamma sont des bouffées de photons qui apparaissent au hasard dans le cosmos. Situés à de très grandes distances, parfois à des milliards d’années-lumière (ce qui, rappelons-le veut également dire des milliards d’années dans le passé), ils sont visibles de notre modeste planète parce qu’il s’agit des événements les plus lumineux et violents de l’Univers (en intensité ils sont classés juste après le Big bang).

 

     Leur découverte est relativement récente puisque datant de la « guerre froide » et plus précisément de l’année 1967, lorsque les satellites militaires américains qui les observèrent pour la première foissursaut-gamma-2.jpg laissèrent penser qu’il s’agissait probablement de l’empreinte d’armes nucléaires : il faut dire qu’on cherchait alors à vérifier le respect du traité d’interdiction des essais atomiques atmosphériques ! Cette ambiance bien particulière poussa les responsables à ne rendre publiques ces observations que dix ans plus tard. Mais, même à cette époque, on ne savait toujours pas grand-chose de ces phénomènes sauf qu’ils étaient variables en intensité et parfaitement  aléatoires donc imprévisibles. C’est quelques années plus tard qu’on mit en évidence deux types différents d’émissions : les sursauts courts et les sursauts longs. Enfin, quelques années plus tard encore, en 1997, grâce au satellite italo-hollandais BeppoSax, équipé à la fois d’un détecteur gamma et d’un détecteur de rayons X, on arriva à orienter l’étude du phénomène vers une source supposée responsable.

 

 

Différents types de sursauts gamma

 

     Nous avons déjà eu  l’occasion d’évoquer les rayons gamma lors du sujet traitant des rayons cosmiques : le rayonnement cosmique est un flux de noyaux atomiques (protons principalement mais aussi noyaux d’hélium) et de particules de haute énergie (qu’on nomme également « relativistes » parce que proches de la vitesse de la lumière telle que définie par la théorie de la relativité générale). Leur origine provient de processus astrophysiques extrêmement violents au cours desquels s’observent également des flashs intenses de photons gamma. On a assez rapidement rapproché l’émission de ces photons gamma de la mort d’étoiles et de la formation de trous noirs. Toutefois, il existe à l’évidence deux phénomènes de nature différente.

 

     Les sursauts longs (plusieurs dizaines de secondes) ont été corrélés sans trop d’hésitation à la mort dune étoile massive, c'est-à-dire, comme etoile-massive-naissance.jpgnous l’avons déjà vu, d’une étoile faisant plus de huit fois la masse de notre Soleil. En effet, lorsqu’elle se retrouve « à court de carburant », une telle étoile voit les réactions nucléaires, qui jusque là se produisaient en son cœur, se ralentir et s’affaiblir au point de ne plus pouvoir contrebalancer le poids de ses couches externes. Celles-ci s’effondrent vers le centre de plus en plus dense de l’étoile : les moins massives de ces étoiles géantes donneront une étoile à neutrons tandis que les plus grosses voient leur cœur être remplacé par un trou noir. Ce trou noir va absorber une grande partie de la matière externe de l’étoile géante et en recracher le reste sous la forme de deux jets opposés composés de matière brûlante éjectée à une vitesse proche de celle de la lumière : il suffit que l’un de ces jets pointe en direction de la Terre pour que l’on observe l’extraordinaire explosion de l’étoile géante. Et cela même si elle est très éloignée de nous car l’émission d’énergie est en effetsupernova mort étoile massive colossale et visible dans tout l’Univers.  À cette occasion, l’étoile mourante peut éclipser toutes les autres étoiles de sa galaxie qui sont pourtant des milliards. Précisons que la mort de telles étoiles est finalement assez rare : depuis l’invention du télescope il y a plusieurs siècles, aucune n’a été observée dans notre galaxie.

 

     Les sursauts courts, c’est une autre affaire et il faut bien avouer qu’il a été plus difficile de les expliquer. Il faut attendre 2005 et l’observation localisée d’un sursaut court par le satellite HETE-2 pour se rendre compte que les caractéristiques des galaxies contenant des sursauts courts sont bien différentes des autres. De ce fait, on n’a certainement pas affaire en trou-noir-avalant-etoile-a-neutrons.jpgpareil cas à la fin d’une étoile massive mais à un phénomène impliquant une étoile double (binaire) : ici, les protagonistes en présence sont des objets très denses comme une étoile à neutrons ou un trou noir. En se rapprochant, les objets de la binaire finissent par fusionner en émettant un flash de photons gamma, intense mais bref.

 

     La lumière, on l’a dit, a une vitesse de propagation de 300 000 km/seconde environ. Bien que cette vitesse soit très élevée (en terme de capacités humaines), l’Univers est si vaste qu’il faut aux rayons lumineux des milliards d’années pour nous parvenir des endroits les plus éloignés de nous. Ce qui veut dire également qu’une source lumineuse si lointaine sera atténuée et difficilement identifiable au sein des milliards d’étoiles plus proches. On saisit donc pourquoi, en dehors de la compréhension des phénomènes proprement dits, les sursauts gamma ont un grand intérêt documentaire : visibles de très loin, ils nous renseignent sur les galaxies lointaines et, par conséquent, sur les premiers instants de notre univers.

 

 

 Sursauts gamma ultra-longs

 

     Depuis 2010 et le satellite Swift, on a donc affaire à ce qui est peut-être un troisième genre de sursauts gamma, ceux qui durent vraiment plus longtemps que les autres. Par quoi peuvent-ils bien être générés ? Baptisé du doux nom de GRB 101225A, le sursaut gamma observé par Swift donne lieu à plusieurs hypothèses. On évoque tout d’abord, au sein d’une étoile binaire, la fusion d’une étoile à neutrons avec une étoile normale comme le Soleil mais en train de mourir et donc au stade de géante rouge : la fusion des deux aurait donné un trou noir et les événements, notammentsatellite-swift.jpg lumineux, y afférent. Une autre hypothèse met en scène une comète tombant sur une étoile à neutrons appartenant forcément à notre propre galaxie et donc beaucoup plus proche que primitivement imaginé, à peut-être 10 000 années-lumière de nous.

 

     C’est à ce moment de la réflexion des chercheurs que des études plus approfondies de la distance du phénomène montrent qu’il est en fait éloigné de… 7 milliards d’années-lumière, bien au-delà da la galaxie d’Andromède ! Beaucoup plus loin que ce que l’on avait jamais pensé… et provoqué par quelque chose d’énorme. On en revient aux étoiles géantes.

 

     On repense à nouveau complètement la question. Nous savons que le sursaut gamma dure le temps que mettent les couches externes d’une étoile pour tomber sur le cœur : quelques minutes au plus dans le cas d’une étoile massive. Comment expliquer des dizaines de minutes, voire presque deux heures pour une observation plus récente ? Il faudrait que l’étoile en cause soit absolument monstrueuse, d’une taille si importante que les scientifiques considèrent cela comme impossible.

 

     Impossible parce que, pour entretenir un sursaut gamma de cette importance, il faudrait une étoile d'un volume égal à des millions de Soleils ! Et une telle étoile, si elle existe, ne pourrait de toute façon pas émettre un tel sursaut gamma : les étoiles géantes de ce type perdraient en effet jusqu’au trois-quarts de leur masse au cours de leur vie, une matière qui ne serait donc plus disponible par la suite… Alors ?

 

     Il existe une autre explication possible : une étoile dont les couches externes seraient perméables aux différentes radiations ce qui permettrait alors à ces enveloppes externes de rester autour du cœur de l’étoile jusqu’à sa mort. De telles étoiles existent (ou ont existé) : ce sontsupergeante-bleue-Zeta_Puppis.png les étoiles primordiales que nous avons évoquées à plusieurs reprises sur ce blog. Au total, on se trouve devant une supergéante bleue presque exclusivement composée d’hydrogène et d’hélium avec très peu d’oxygène et pas du tout d’éléments lourds (fer, carbone, etc.) qui, eux, apparaissent dans les générations suivantes d’étoiles précisément à la mort de ces étoiles dites primordiales… Un seul problème mais il est de taille : ces étoiles de première génération ont disparu dès le début de l’Univers, il y a 13,6 milliards d’années. Comment se pourrait-il qu’il en existe encore vers - 7 milliards d’années (puisque le sursaut gamma qui nous intéresse provient d’un endroit situé à 7 milliards d’années-lumière) ?

 

     C’est là qu’intervient l’observation de galaxies originales, en quelque sorte « marginales » dans le grand bal galactique. On sait que, normalement, les galaxies se remodèlent sans cesse et que les plus grosses avalent, « phagocytent » les plus petites qui sont trop proches et encore liées à elles par la gravité. Chaque fois, les nuages de gaz se percutant, c’est alors une débauche de nouvelles naissances d’étoiles, étoiles de plus en plus riches en éléments lourds. Toutefois, certaines galaxies semblent rester en dehors de cette vie agitée et on pense que c’est le cas de celle qui abrite le sursaut gamma GRB 101225A : une petite tache bleue bien au-delà d’Andromède. On y trouve sans doute ces étoiles géantes qu’on pensait disparues depuis des milliards d’années et qui s’y fabriquent peut-être encore…

 

 

Danger des sursauts gamma

 

     Un sursaut gamma n’est pas seulement un phénomène extraordinaire comme l’Univers nous en propose parfois et l’élucidation de son mécanisme n’est pas qu’un jeu de l’esprit ou le simple désir d’expliquer les choses. C’est aussi un phénomène dont il faut se méfier… et qu’il est donc nécessaire de connaître le mieux possible !

 

     On le disait précédemment : des sursauts gamma, on n’en a pas vu depuis des siècles dans notre galaxie et c’est tant mieux. À moins de 6000 années-lumière de nous, ce type de phénomène hautement énergétique pourrait être mortel pour la Terre. Il faut pour cela, comme on l’a vu, que le faisceau soit dirigé vers notre planète : il brillerait alors aussi fort que le Soleil ! La conséquence en serait une destruction importante de la terre-detruite.jpgcouche d’ozone (30 à 40% durant au moins 10 ans) avec pour résultat immédiat la mise à mal du phytoplancton, base de la chaîne alimentaire océanique. On ne parle évidemment pas des ravages que pourrait entraîner une telle situation sur la peau d’homo sapiens… Mais ce n’est pas tout. Il y aurait aussi une diminution de la photosynthèse avec un effondrement de la production alimentaire tandis que, dans le même temps, l’atmosphère terrestre se colorerait en permanence d’une teinte orange en raison de la formation d’oxyde de carbone… Toutes les chaînes alimentaires seraient touchées, au premier rang desquelles, évidemment, celles qui concernent l’Homme. Peut-être le début de sa fin de la domination sur la planète ! Il s’agit d’un risque qu’il ne faut pas prendre à la légère : de nombreux spécialistes pensent par exemple que c’est un sursaut gamma relativement proche qui pourrait expliquer l’extinction de masse de l’ordovicien il y a 440 millions d’années (60% des genres et 80% des espèces détruits).

 

     L’apparition d’un phénomène aussi violent peut, en revanche, apporter quelque chose de positif. Bien des astronomes pensent que la formation du système solaire à partir de son nuage de gaz primordial il y a 4,5 milliards d’années a été grandement facilité (si ce n’est réalisé) par l’explosion d’une supernova relativement proche et de son cortège de phénomènes éruptifs comme, peut-être, un important sursaut gamma. On peut donc en déduire sans trop risquer de se tromper que ce qui peut contribuer à donner la Vie peut également aboutir à sa destruction. Une leçon à méditer.

 

 

 

 

Sources :

1. Wikipedia France ; Wikipedia USA

2. Science & Vie, 1152, septembre 2013

3. Encyclopaedia Universalis

4. Encyclopaedia Britannica

5. www.futura-sciences.com

6. www.notre-planete.info

 

Images :

 

1.  sursaut gamma (sources : club.doctissimo.fr)

2. autre sursaut gamma (sources : astronomie.skyrock.com)

3. naissance d'une étoile géante (sources : skyimagelab.com)

4. supernova (sources : astrosurf.com)

5. trou noir et étoile à neutrons (sources : commons.wikimedia.org)

6. le satellite Swift (sources : nasa.gov)

7. supergéante bleue (sources : afhalifax.ca)

8.Terre détruite (sources : channel.nationalgeographic.com)

 (pour lire les légendes des illustrations, posser le pointeur de la souris sur l'image)

 

Mots-clés : satellite Swift - satellite BeppoSax - rayonnement cosmique - étoile à neutrons - trou noir - supernova - étoile binaire - géante rouge - supergéante bleue - étoiles primordiales - extinction de masse de l'ordovicien

   (les mots en blanc renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

 

1. mort d'une étoile

2. novas et supernovas

3. les extinctions de masse

4. les étoiles primordiales

5. galaxies cannibales

6. la saga des rayons cosmiques

 

 

      Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
19 novembre 2014 3 19 /11 /novembre /2014 18:26

 

 

 HL-Tauri.jpg

 

 

 

 

 

 

 

 

     Dans le domaine de la science, il est incontestablement peu de certitudes définitives. Toutefois, depuis des années, la communauté scientifique était tombée à peu près d’accord sur la façon dont se forment les planètes dans un système stellaire mais il est vrai que le seul exemple que nous avions pour référence était le nôtre, le système solaire. Puis, au début des années 1990 fit irruption l’exoplanétologie, c'est-à-dire la science s’occupant des planètes situées en dehors du système solaire et que nous n’avions jusque là pas la possibilité d’étudier directement…

 

     Très vite on s’aperçut que les observations ne collaient pas tout à fait avec les théories élaborées ici-bas. Tout d’abord, on mit en évidence des planètes géantes gazeuses toutes proches, dès leur formation, de leur étoile centrale. Bizarre car contraire aux suppositions des théoriciens ! Ensuite, il y a quelques mois, était découverte une planète géante tellurique (c'est-à-dire composée de roches comme la Terre) mais dix-sept fois plus massive que notre planète, ce que les modèles théoriques supposaient hautement improbable. Étrange encore. Et puis, il y a quelques jours, le radiotélescope européen ALMA, basé au Chili, nous a produit l’extraordinaire photo d’une étoile en formation, encore enrobée par la gangue de sa nébuleuse de gaz mais où, déjà, les futures planètes sont parfaitement individualisables ce que les spécialistes pensaient théoriquement impossible. Pourtant, une photographie, c’est bien une preuve directe, n’est-ce pas ? Là, ça commence à faire beaucoup et on peut se poser ces questions : que savons-nous au juste de la formation des planètes ? Le modèle du système solaire n’est-il qu’une option parmi d’autres ou n’y avons-nous peut-être rien compris ? Cherchons à y voir un peu plus clair.

 

 

Formation du système stellaire

 

     Depuis le début de l’époque moderne, les observateurs de notre système solaire sont partis de la notion en apparence logique que les étoiles se forment toutes de la même manière et qu’il suffit d’appréhender la formation de la nôtre et de son cortège de planètes pour comprendre la genèse de toutes les autres. On trouvera dans un sujet dédié (origine du système solaire) l’historique de la pensée scientifique sur ce sujet qui correspond en fait à des siècles de controverses. Essayons quant à nous de résumer la théorie la plus partagée par le monde de l’astronomie d’aujourd’hui.

 

     Au commencement, il y a fort longtemps (environ 10 milliards d’années), ce qui sera le futur système solaire n’est qu’une minuscule partie d’un immense nuage de gaz, essentiellement composé d’hydrogène et d’hélium, qui tourne en périphérie de la Galaxie, plutôt loin du centre. Mais, au fur et à mesure que le temps passe, le nuage de gaz va se contracter nebuleuse-formation-etoiles.jpgprogressivement tandis qu’il s’enrichit en éléments lourds (fer, carbone, etc.) apportés par les explosions d’étoiles massives voisines (certains composants particuliers laissent même supposer qu’une supernova aurait explosé à proximité à cette même époque). Aujourd’hui, ces éléments lourds représentent environ 2% de l’ensemble.

 

     Cette contraction va durer plusieurs milliards d’années jusqu’à ce que, il y a 4,6 milliards d’années, le nuage finisse par s’effondrer sur lui-même en raison de sa propre gravité devenue trop importante. De ce fait, le nuage se fragmente en une série de nuages plus petits dont l’un deviendra le système solaire : on parle alors de protosystèmes.

 

     Le protosystème (celui du futur Soleil mais c’est pareil pour les autres) voit donc sa taille diminuer mais, selon la physique classique, qui dit réduction de taille dit augmentation de la vitesse de rotation (on appelle cela la conservation du mouvement angulaire) : c’est un peu comme ledisque-protoplanetaire.jpg patineur tournant sur lui-même qui accélère sa vitesse de rotation en repliant ses bras. De plus, puisque ce protosystème est principalement composé de gaz concentré, il est encore souple et il peut donc s’aplatir dans un plan perpendiculaire à l’axe de rotation : tout est en place pour que naisse le disque protostellaire.

 

     Apparaissent également des forces électromagnétiques qui créent une sorte de liaison entre le centre du disque (qui sera la future étoile) et le reste (où apparaitront les planètes) : de ce fait, le centre va être progressivement freiné tandis que le reste du disque accélère sa vitesse. Au bout d’un certain temps, les deux systèmes se trouvent séparés et

 

     1. la protoétoile poursuit sa contraction jusqu’à ce que, sa température augmentant fortement, la fusion nucléaire s’enclenche et qu’elle devienne une véritable étoile tandis que

 

       2. le reste du disque protoplanétaire conduit à la formation des planètes.

 

 

Formation des planètes

 

     Le disque protoplanétaire tourne donc autour de la future étoile : peu à peu, au gré du temps et des rencontres, ses atomes commencent à s’agréger les uns aux autres pour former des poussières (les flocules) qui, elles aussi, vont finir par se réunir afin de former des corps plus volumineux appelés des planétésimaux. Le disque protoplanétaire est donc devenu un disque d’accrétion


    Quelques millions d’années s’écoulent et voici que nos planétésimaux, grâce aux turbulences du disque, fusionnent progressivement pour donner des objets de plus en plus gros aboutissant planetesimaux.jpgaux planètes que nous connaissons : dans le cas du système solaire, il aura fallu environ 200 millions d’années pour aboutir à cette situation. Il est à noter que, dans ce modèle, en raison du temps nécessaire, les planètes n’apparaissent qu’une fois enclenchées les réactions de fusion nucléaire de l’étoile, c'est-à-dire une fois que celle-ci est allumée, les planètes se créant secondairement en utilisant les gaz laissés disponibles…

 

     Les planètes sont à peu près constituées mais elles n’ont pas encore leur aspect définitif car de nombreux remaniements ont encore lieu : internes avec un magma qui se solidifie en surface et des éruptions volcaniques qui diminuent d’intensité mais également externes puisqu’elles sont soumises à d’intenses bombardements, tous événements qui vont encore durer un bon milliard d’années.

 

     Dans ce modèle classique, l’aspect définitif des planètes va dépendre de leur place initiale au sein de l’anneau protoplanétaire. Près de l’étoile, ici le Soleil, elles voient leurs éléments légers recevoir beaucoup d’énergie (ce qui empêche ceux-ci de se condenser) et, par voie de conséquence, le matériau qui va constituer ces planètes sera riche en éléments lourds (silicium, soufre, cuivre, fer, etc.) : ces objets seront donc de densité élevée et formeront les planètes dites telluriques comme la Terre.

 

      En revanche, plus éloignées de l’étoile, s’il existe bien chez ces planètes un noyau dur, c’est essentiellement du gaz (hydrogène) qui va l’envelopper : de ce fait, les planètes dites gazeuses seront très légèressaturne-2.jpeg mais beaucoup plus grosses que les telluriques. Puisque le gaz disponible n’a qu’une durée de vie limitée  à quelques millions d’années, il est nécessaire que ces planètes soient créées avant sa dissipation, donc assez rapidement (en termes géologiques).

 

     Selon ce modèle quasi-universellement accepté, on peut donc retenir quelques grands critères concernant la formation des planètes :

 

. d’abord les planètes se forment dans le disque protoplanétaire alors que la protoétoile s’est déjà « allumée » ;

 

. ensuite, les planètes proches de l’étoile sont toutes des planètes « telluriques », c'est-à-dire composées de roches et donc de petite taille, tandis que les étoiles gazeuses sont forcément des géantes installées en périphérie du système stellaire, loin du foyer central ;

 

. enfin, puisque les planètes se forment dans un disque qui tourne avec l’étoile centrale, elles tourneront donc également toutes dans le même sens.

 

     Et c’est bien ce que l’on remarque avec le système solaire : les petites planètes telluriques (Mercure, Vénus, Terre, Mars) sont « intérieures », relativement proches du Soleil tandis que les géantes gazeuses (Jupiter, Saturne, Uranus, Neptune) sont bien en périphérie. Par ailleurs, toutes les planètes sont situées dans ce que l’on appelle l’écliptique, ce « plan circulaire » autour du Soleil qui correspond à l’ancien disque protoplanétaire. Plus encore, leurs orbites sont elliptiques (à l’exception de Mercure, trop proche de l’étoile). Enfin, nos huit planètes tournent toutes dans le même sens.

 

     Du coup, tout est parfait dans le meilleur des mondes et tout le monde est content ? C’était compter sans l’avancée de l’astronomie moderne ! A présent, depuis les années 1990, on peut observer directement les planètes d’autres systèmes stellaires car ces planètes qui n’étaient que des suppositions  - ce qui valut à Giordano Bruno de mourir sur le bûcher - existent bel et bien et elles sont certainement plus nombreuses que les étoiles qu’on compte déjà par milliards… Et on commence à pouvoir les observer !

 

     Et c’est là que le bât blesse : les observations de planètes extrasolaires nous montrent des situations qui ne « collent pas » complètement au modèle que nous venons de voir. Comprenons-nous bien : il n’est pas question de rejeter l’ensemble de la théorie qui reste certainement valable mais il faut bien admettre qu’elle n’explique pas tout.

 

 

Faut-il revoir la théorie ?

 

     Presque deux milliers d’exoplanètes ont été découvertes à ce jour et ce chiffre augmente sans cesse. Certains de ces astres ont pu être assez finement étudiés et le moins que l’on puisse dire, c’est que plusieurs aspects de la théorie de la formation planétaire que nous venons de voir ont besoin d’un bon nettoyage. Citons quelques unes des principales pierres d’achoppement de notre approche théorique.

 

     Les Jupiter chauds. On appelle ainsi les planètes géantes gazeuses repérées tout contre leurs étoiles. C’est le cas, par exemple, de la planète HD 209458 b, également surnommée Osiris, située à 154 années-lumière de la Terre : ce « Jupiter chaud » tourne tout contre son étoile (il en est 8 fois plus proche que Mercure ne l’est du Soleil). L’année sur Osiris ne dure que 3,5 jours et sa température de surface est estimée jupiter-chaud.jpgà plus de 1000°. Comment cela est-il possible alors que, selon la théorie, une géante gazeuse ne peut naître que loin de son astre central ? Eh bien, disent les spécialistes, c’est qu’un Jupiter chaud comme Osiris est bien né loin de l’étoile mais s’en est ensuite rapproché par ce qu’on appelle une « migration planétaire ». Du coup, on peut expliquer la période orbitale ultracourte de ce type de planètes (3 à 4j contre une année sur Terre). La réponse est-elle satisfaisante ? Non. En 2004, on découvre un Jupiter chaud ayant une période orbitale de UN jour (c'est-à-dire que la planète est « collée » contre son étoile) : comment la planète peut-elle résister à de telles conditions ? En 2008, une planète gazeuse 10 fois plus grosse que Jupiter est découverte toute proche de son étoile (TW Hydrae)… qui a moins de 10 millions d’années : l’étoile étant toute jeune, il est impossible de parler de migration de la planète gazeuse (elle n’aurait pas eu le temps de se faire). Et puis que dire de ces observations récentes qui montrent que, contrairement à ce qu’on attendait, plusieurs Jupiter chauds possèdent bien moins d’eau que ne le voudrait la théorie de leur formation et de leur migration ? Qu’il faut certainement retravailler la théorie et c’est bien ce que font les scientifiques.

  

       La Terre géante. Découverte en 2011 par la mission Kepler de la NASA, la géante tellurique de ce système a été surnommée Godzilla tant ses dimensions sont impressionnantes : 2,3 fois le diamètre de la Terre et 17 fois sa masse ! Impossible qu’une telle planète puisse exister affirmaient les spécialistes et pourtant ! Elle tourne tout près d’une très ancienne étoile vieille de 11 milliards d’années (une naine jaune comme le Soleil) mais sa taille aurait dû en faire une géante gazeuse alors qu’elle est rocheuse (tellurique). Où se situe l’élément qui n’a pas été compris ? Là aussi, il y a bien du travail en perspective.

 

     La formation de planètes autour d’une étoile double (GG-Tau-A). Il y a quelques années, un astronome très très célèbre déclarait à la télévision qu’il était impossible que des systèmes planétaires puissent se constituer autour d’étoiles binaires (doubles) et a fortiori multiples. Je l’entends encore : il était catégorique et affirmait en souriant benoîtement que les orbites desdites planètes seraient bien trop instables, les irrégularités de mouvement excessives, etc... Eh bien, raté ici aussi ! L’exoplanétologie a découvert que la majorité des étoiles multiples (les plus répandues dans l’Univers) possède des systèmes planétaires. Le système GG Tau-A, par exemple, est situé à 450 années-lumière de nous dans la constellation du Taureau. Il s’agit d’un tout jeune système en train de se former, un ensemble composé de trois étoiles dont une binaire (c'est-à-dire elle-même composée d’un système de deux étoiles tournant l’une autour de l’autre). Comme elles sont jeunes,  on peut encore voir les disques d’accrétion gazeux qui les entourent et, surprise, il existe un grand mizar alcoldisque autour de l’ensemble du système et des disques secondaires autour de chacune des étoiles, y compris la binaire : c’est là qu’est en train de se former tout un aréopage de planètes. D’ailleurs, on pense bien y avoir déjà mis en évidence une géante gazeuse. La théorie de formation des planètes n’était donc pas complète !

 

     Le sens de rotation des planètes. C’était entendu une fois pour toutes : les planètes se forment dans le disque d’accrétion de la protoétoile, une fois celle-ci « allumée », et se mettent à tourner dans le même sens qu’elle. C’est d’ailleurs le cas du système solaire. Malheureusement, l’observation de systèmes exoplanétaires ne confirme pas la théorie. Il s’agit encore de Jupiter chauds (ils sont plus faciles à détecter et à observer…) qui ne suivent pas le modèle : ainsi sur 27 exoplanètes découvertes il y a quelque temps, six d’entre elles ont été détectées orbitant dans le sens contraire de celui de leur étoile. Comment expliquer ce paradoxe ? Une théorie alternative de migration a été avancée, expliquant que la « migration » de ces planètes ne dépendrait pas du disque de poussières de départ mais des forces gravitationnelles dues à des planètes plus lointaines, voire d’autres étoiles assez proches. Bref, on n’est absolument sûr de rien…

 

     Le disque protoplanétaire de HL Tauri. Enfin, pour clore cette liste d’interrogations, signalons la plus récente de ces anomalies : la magnifique photo qui sert d’accroche à ce sujet est extraordinaire précisément parce qu’il s’agit d’une photographie, c'est-à-dire la réalité vraie et non pas un schéma reconstitué ou une « vue d’artiste » comme on en voit souvent en astronomie faute de mieux… Et que nous montre ce cliché ? Tout simplement un système planétaire en cours de formation avec un luxe de précision jusqu’ici inégalé. Le cliché a été pris par l’observatoire européen ALMA au Chili au mois de septembre dernier (2014) et concerne le système tout neuf HL Tauri qui, comme son nom l’indique, se trouve, lui aussi, dans la constellation du Taureau, mais à environ 450 années-lumière du Soleil. Cette étoile n’a qu’un million d’années d’existence (ce qui en fait un bébé étoile) et elle n’est pas visible à l’œil nu, de même qu’elle ne peut être correctement aperçue par les télescopes terriens voire le télescope spatial Hubble : elle est encore cachée au sein de la nébuleuse de gaz qui lui a donné naissance. Il fallait le radiotélescope d’ALMA qui observe le ciel dans les longueurs d’onde submillimétriques, c'est-à-dire celles qui concernent le rayonnement des poussières les plus froides de l’Univers, pour dégager une image réellement exploitable. On y radiotelescope-ALMA.jpgvoit donc au centre la protoétoile pas encore allumée et, autour d’elle, les cercles concentriques traduisant la formation déjà assez avancée des planètes. C’est une énorme surprise puisque, selon la théorie jusque là en vigueur, on pensait qu’il fallait plusieurs millions d’années pour que les planétésimaux s’assemblent pour former les planètes définitives. Cela peut paraître anecdotique mais ça ne l’est pas. En effet, si les planètes se forment après leur étoile, elles devront se contenter des gaz résiduels… s’il y en a. En revanche, si elles se forment en même temps, cela veut dire que toutes les étoiles sont potentiellement entourées de planètes… peut-être par dizaines. Or, souvenons-nous : il y a environ 250 milliards d’étoiles dans la seule Voie lactée (et des milliards de galaxie comme elle dans l’Univers). Cela veut probablement dire que le nombre de planètes dans notre Univers dépasse l’entendement humain… Et il n’y en aurait aucune autre qui ressemble à la Terre ? Je ne peux le croire et, de toute façon, c’est statistiquement impossible.

 

 

La théorie de la formation planétaire est à revoir

 

     Comme le montrent les exemples « d’anomalies » théoriques et/ou réelles que nous venons d’énumérer, la formation des planètes dont nous pensions connaître l’essentiel est certainement à revoir, au moins en partie. Il faut absolument comprendre la place de ces planètes gazeuses géantes surnommées Jupiter chauds qui n’existent pas dans notre système solaire et, d’une façon plus générale, comment se distribuent les différentes planètes dans l’histoire de leur genèse. Disons que, pour l’instant, nous avons une approche plutôt globale de la question et qu’il reste bien des incertitudes à approfondir. D’ailleurs, il n’est pas dit que de futures observations, encore plus précises, ne nous apporteront pas de nouvelles interrogations.

 

     En définitive, c’est bien cela la science : avancer à petits pas, tirer un enseignement général d’une foule d’observations plus ou moins disparates et ne pas hésiter à tout repenser face à la réalité de l’observation. Le dogmatisme ici ne peut déboucher sur rien de valable.

 

 

 

Sources

 

1. fr.wikipedia.org

2. www.techno-science.net/

3. Encyclopaedia Britannica

4. www.astronomes.com

5. www.redshift-live.com

6. www.futura-sciences.com

 

Images

 

1. l'étoile en formation HL Tauri (sources : www.eso.org/)

2. nébuleuse stellaire (sources : www.cnrs.fr)

3. disque protopla,étaire (sources : ast.obs-mip.fr)

4. planétésimaux (sources : irfu.cea.fr

5. Saturne (sources : maxisciences.com)

6. Jupiter chaud (sources : lecosmographe.com)

7. Mizar et Alcor (sources : irfu.cea.fr)

8. radiotélescope ALMA (sources : www.eso.org/)

(pour lire les légendes des illustrations, posser le pointeur de la souris sur l'image)

 

Mots-clés : exoplanétologie - supernova - fusion nucléaire - planétésimaux - disque d'accrétion - planète tellurique - géante gazeuse - Jupiter chaud - ecliptique - migration planétaire - étoile double (ou binaire) - observatoire ALMA

      (les mots en blanc renvoient à des sites d'information complémentaires)

 

Sujets apparentés sur le blog

 

1. place du Soleil dans la Galaxie

2. étoiles doubles et systèmes multiples

3. origine du système solaire

 

 

       Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
25 août 2014 1 25 /08 /août /2014 18:18

 

 telescope-hubble.jpg

 

 

 

 

     Les grands télescopes d’observation de l’Univers existent depuis assez longtemps puisqu’ils ont commencé à apporter leurs lots de découvertes dès 1904 avec celui du Mont Wilson, aux USA : ce premier grand télescope permit notamment à l’astronome Edwin Hubble, dans les années 1920, de mettre en évidence le fait que des galaxies comme la Voie lactée existent en grand nombre et que l’Univers est en expansion. Vint ensuite, en 1949, celui du Mont Palomar, toujours aux USA, encore plus grand et encore plus précis (pour ce dernier, j’ai conservé en mémoire la photo du camion transportant, à travers le désert et vers le site prévu, le miroir principal, camion suivi par l’impressionnante file de voitures des scientifiques veillant jalousement sur leur futur joujou). Ces événements en définitive pas si lointains furent, certes, des avancées spectaculaires dans l’observation de nos cieux mais tous ces merveilleux outils avaient un défaut rédhibitoire : situés au sol, ils ne pouvaient s’affranchir des turbulences de l’air qui brouillent les images… On avait donc depuis longtemps envisagé de déplacer les observatoires au delà de l’atmosphère terrestre mais faire décoller une fusée, mettre en orbite et exploiter même un « petit » télescope resta longtemps du domaine du phantasme jusqu’à ce qu’en 1990…

 

 

L’idée

 

     Pouvoir observer l’Univers en s’affranchissant des contraintes terrestres remonte aux années 1920 (une idée avancée des 1923 par le physicien allemand Hermann Oberth) mais c’est en 1946 que l’astronome spitzer.jpgaméricain Lyman Spitzer en évoque fermement le concept. Ce scientifique met en avant deux arguments fondamentaux : d’abord, comme cela a déjà été signalé, la présence dans l’espace d’un télescope permettrait de s’affranchir des turbulences atmosphériques et d’obtenir en conséquence une précision d’observation bien supérieure et, d’autre part, cela permettrait également d’étudier dans les domaines de l’infrarouge et de l’ultraviolet ce qui est impossible au sol à cause de l’atmosphère qui intercepte la plus grande partie de ces rayonnements.  Manquaient à l’évidence les compétences techniques qui permettaient un financement acceptable… On se contenta donc de quelques caméras embarquées dans les premières fusées du début de l’ère spatiale.

 

     En 1970, la NASA crée un comité chargé de l’étude de faisabilité d’un projet de télescope spatial mais les fonds tardent à venir ou, s’ils existent, ils sont rapidement amputés. Au début des années 1980, le projet se dessine enfin : pour en limiter le coût, la taille du miroir du télescope est revue à la baisse (mais reste acceptable) et, surtout, l’agence spatiale européenne, l’ESA, est invitée à se joindre à l’opération en échange d’une participation de 15% dans le financement global. C’est la grande époque des navettes spatiales américaines et le projet de télescope s’appuie sur elles afin que, une fois mis en orbite, l’entretien et d’éventuelles réparations puissent être régulièrement pratiqués : tous les instruments embarqués dans le laboratoire spatial sont donc pensés pour être remplacés manuellement par des astronautes.

 

 

La mise en service

 

     Le télescope est lancé le 24 avril 1990 par l’intermédiaire de la navette spatiale Discovery.  C’est un véritable petit observatoire astronomique dediscovery-shuttle.jpg 11 tonnes puisque, outre le miroir principal de 2,4 m, il est couplé à plusieurs spectromètres et trois caméras (la première à champ étroit destinée à observer les objets peu lumineux, la seconde pour les observations à champ large et enfin la troisième pour l’infrarouge). Puisque pour des raisons politico-écologiques il a été décidé de ne pas utiliser de source d’énergie d’origine nucléaire, la production d’électricité destinée à faire fonctionner le module est assurée par deux ensembles de panneaux solaires moins polémiques mais probablement plus difficiles à manipuler.

 

     Le lancement est une réussite mais la joie des scientifiques est de courte durée : on se rend compte immédiatement que les premières images obtenues sont de qualité médiocre et que, même après traitement des dites-images, celles-ci restent floues. Il faut se rendre à l’évidence : une infime erreur de calcul dans la taille du miroir a rendu l’instrument « myope » ! Il faudra attendre une mission de sauvetage en 1993 avec à nouveau Discovery pour enfin corriger ce défaut « de jeunesse » (et au passage changer quelques autres instruments). Le télescope est alors pleinement opérationnel et il va bientôt changer notre perception de l’Univers.

 

 

Une moisson de découvertes

 

     Depuis la première mission de réparation par Discovery en 1993, Hubble verra les navettes revenir quatre fois pour assurer sa bonne marche. Chaque fois, les instruments défaillants sont remplacés et ceux devenus obsolètes changés. Toutefois, la dernière « mission » d’une navette (Atlantis) remonte maintenant à 2009 et c’était la dernière possible puisque le système de ces vaisseaux spatiaux réutilisables a été depuis abandonné par la NASA. On espère donc que le télescope spatial continuera à fonctionner à peu près normalement jusqu’à sa relève en 2018 par le télescope spatial James Webb.

 

     La NASA avait assigné trois tâches à Hubble, tâches qui furent parfaitement accomplies :

 

étudier le proche milieu intergalactique afin d’en décrire la composition ainsi que celle des galaxies ;

 

*  étudier les champs profonds afin d’observer les premiers instants de l’Univers et

 

déterminer la constante de Hubble qui est, rappelons-le, la constante de proportionnalité entre distance et vitesse de récession apparente des galaxies ou, pour le dire plus simplement, la constante qui permet de déterminer le taux d’expansion de l’Univers.

 

    Mais ce ne fut pas tout : Hubble nous a ébloui par la qualité et la beauté des photographies qu’il a prises et, surtout, par des découvertes essentielles. Revenons brièvement sur quelques unes d’entre elles :

 

* En juillet 1994, Hubble était en parfait état de marche lorsque la comète Shoemaker-Levy s’écrasa sur Jupiter. Il participa donc à cette première observation directe de la collision hors de notre planète d’objets shoemaker-levy-par-hubble.jpgdu système solaire, événement confirmant au passage le rôle « protecteur » de la géante gazeuse puisque la forte influence gravitationnelle de celle-ci « détourne » un grand nombre de petites comètes et astéroïdes qui, autrement, iraient s’écraser sur d’autres cibles potentielles dont la Terre… avec les conséquences que l’on imagine.

 

* C’est Hubble qui, parmi les premiers, apporta la confirmation qu’il existe bien des exoplanètes, c'est-à-dire des planètes tournant autour d’autres systèmes solaires que le nôtre, une notion évoquée depuis des siècles mais jamais encore prouvée (première détection du transit secondaire sur l’étoile HD 209458, voir le sujet dédié : planètes extrasolaires).

 

* Hubble fut un élément déterminant dans la consécration du modèle actuel de l’accélération de l’Univers puisque ses observations ont permis de l’affiner.

 

* Contrairement aux télescopes terrestres (mais cela change rapidement), Hubble est capable d’observer les étoiles des autres galaxies, donc dans des milieux différents de la Voie lactée, ce qui a permis de compléterM31-compte-des-etoiles-par-Hubble.jpg notre connaissance du cycle stellaire.

 

* C’est encore le télescope spatial qui, grâce à des observations répétées, a confirmé le fait que la plupart des galaxies (dont la nôtre) recèlent un trou noir géant en leur centre. Rappelons pour la petite histoire qu’il y a à peine quelques années, une majorité de scientifiques doutaient de ce que les trous noirs – notion théorique s’il en est – puissent réellement exister…

 

*  Depuis l’astronome suisse Fritz Zwicky, on sait que la quantité visible de matière ne peut à elle seule expliquer le ballet des galaxies dans le ciel : le calcul de l’action des forces gravitationnelles qui régissent leurs mouvements sous-entend obligatoirement la présence d’une « matière invisible » appelée, faute de mieux, matière noire ou matière sombre. Inutile de dire que, durant des années, cette idée insolite divisa profondément la communauté scientifique. Hubble apporta la preuve que cette matière noire ne pouvait pas être due à la seule existence des naines brunes (étoiles avortées car de trop petites tailles) ou noires (évolution possible, mais non prouvée, des naines blanches) : d’après les observations du télescope spatial, leur nombre est en effet trop faible pour expliquer les grandes divergences des chiffres.

 

* L’étude de ce que l’on appelle aujourd’hui « le champ profond de Hubble » est également une contribution remarquable du télescope. Il s’agit de la photographie d’une région couvrant un trente millionièmes duhubble-deep-field.jpg ciel, région minuscule certes mais contenant déjà plusieurs milliers de galaxies. Cette photographie confirma ce que l’on soupçonnait auparavant, à savoir que, quelle que soit la direction dans laquelle on regarde, on trouve des galaxies semblables à la nôtre à n’en plus finir mais pas seulement… Puisque regarder si loin, c’est regarder dans un passé très ancien, reflétant les premiers instants de l’Univers, Hubble a ainsi repoussé les limites de l’observation et, surtout, prouvé que des galaxies importantes étaient présentes bien plus tôt qu’on ne le pensait. Ajoutons à cela que cette étude fut également effectuée dans le ciel austral avec les mêmes résultats, démontrant de façon irréfutable l’homogénéité de l’Univers à grande échelle : il ne s’agit pas là d’une observation banale mais de la confirmation du bien fondé de la théorie du Big bang et de son inflation initiale (voir le sujet : Big bang et origine de l'Univers).

 

     On voit donc que l’apport de ce télescope malgré la taille modeste de son optique (comparée à celle des télescopes au sol) fut et est encore fondamental. Mais ce qui est peut-être le plus remarquable et le plus émouvant dans la moisson de ce petit engin, c’est la qualité et la beauté des photographies de l’Univers qu’il nous a données : galaxies, amas globulaires, nébuleuses, rémanents de novas, couples binaires, cocons stellaires, etc. On ne peut que s’extasier devant l’extraordinaire album illustré par le télescope Hubble : pour s’en convaincre, il suffit de faire un saut sur le site officiel du télescope à l’adresse suivante : http://hubblesite.org/ et choisir de visualiser une des centaines d’images extraordinaires de la collection. L’astronome du siècle dernier Camille Flammarion (et bien d’autres) aurait certainement donné des années de sa vie pour voir ça !

 

 

Les temps changent

 

     Si tout va bien pour lui (et c’est bien le cas actuellement), le télescope spatial Hubble continuera à fonctionner sans problème majeur durant encore quelques années. Le temps que son successeur, actuellement en phase d’assemblage, soit lancé dans l’espace. Toutefois, celui-ci ne sera pas comparable à Hubble pour une raison très simple : depuis le lancement de notre télescope spatial, il y a un peu plus de vingt ans, les temps ont changé. En effet, les grands télescopes « terriens » sont devenus tout à fait compétitifs car l’avancée des techniques a pu combler leur principal défaut : malgré l’atmosphère, ils peuvent à présent voir aussi bien que Hubble ! C’est que, entretemps, l’informatique est passée par là : les nouveaux engins sont maintenant aidés par un ordinateur qui calcule les imprécisions engendrées par les turbulences de l’air et les corrige en temps réel. On parle alors « d’optique adaptative » qui consiste à braquer un faisceau laser dans la haute atmosphère, vers 90 km de hauteur, sur la mince pellicule d’atomes de sodium laissée par les météorites lors de leur entrée dans l’atmosphère. Du coup, ce sodium se met à briller et crée une telescope-VLT.jpgimage artificielle qui permet au système de calculer l’instabilité de l’air et d’adapter l’optique de l’instrument plus de mille fois par seconde… De ce fait, par exemple, bien que situé au sommet du Cerro Paranal (à 2600 m d’altitude), au Chili, le télescope VLT de l’agence européenne (4 miroirs de 8,20 m reliés) est deux fois plus précis que Hubble !

 

     Cette amélioration considérable des données fournies par les observatoires au sol explique pourquoi le successeur de Hubble ne sera pas « un Hubble amélioré ». Si l’on veut observer l’Univers en lumière visible, il est évident que, même dotés d’optiques adaptatives très performantes et donc onéreuses, les observatoires terriens reviennent nettement moins chers à construire et surtout à entretenir qu’un télescope spatial : on préférera consacrer l’argent ainsi économisé à construire des miroirs (ou des ensembles de miroirs) plus grands et entourés d’équipements encore plus performants.

 

     Reste que le successeur de Hubble qui porte le nom d’un autre homme célèbre, James Webb (un des principaux responsables du projet Apollo) étudiera le cosmos dans une gamme d’optique qui échappe aux observatoires terrestres, l’infrarouge. Doté d’un miroir de 6,5 m (contre 2,4 pour Hubble), il pourra collecter une image 9 fois plus rapidement que son prédécesseur. Il devrait être placé en orbite en 2018 par un lanceurtelescope-james-webb.jpg Ariane 5 sous le triple parrainage de la NASA, de l’Agence Spatiale Européenne et du CSA (Agence spatiale canadienne) mais, contrairement à Hubble, il n’est prévu pour lui aucune mission d’entretien.

 

 

Il y a un avant et un après Hubble

 

     Le télescope spatial Hubble aura marqué un tournant en astronomie en permettant pour la première fois à l’humanité de s’affranchir des contraintes terrestres pour observer son environnement proche et lointain. Comme on l’a vu, Hubble a permis de réaliser d’énormes progrès dans la compréhension de notre univers. Un an après le lancement du télescope spatial James Webb (et si tout se passe bien), il était prévu de « mettre Hubble à la retraite » après 25 ans de bons et loyaux services. En réalité, puisqu’il n’est plus question pour des raisons techniques de prévoir des missions d’entretien, on voit mal les scientifiques se passer d’un outil pour peu qu’il fonctionne encore. On peut donc penser que Hubble continuera quelques années de plus son observation du ciel.

 

 

 

Sources

 

1. fr.wikipedia.org

2. http://www.techno-science.net/

3. Encyclopaedia Britannica

4. hubblesite.org/

5. pgj.pagesperso-orange.fr/Hubble.htm

 

 

Images :

 

1. le télescope spatial Hubble (sources : solarsystem.nasa.gov/)

2. Lyman Spitzer (sources : spaceflightnow.com/)

3. la navette Discovery installant Hubble sur son orbite géostationnaire (sources : cdn.zmescience.com/)

4. la comète Shoemaker-Levy s'écrasant sur Jupiter (sources : hubblesite.org/)

5. étoiles de la galaxie d'Andromède individualisées par Hubble (sources : hubblesite.org/)

6. Hubble deep field (sources : hubblesite.org/)

7. le télescope VLT de l'ESA (sources : atacamaphoto.com/)

8. le télescope James webb (sources : spacetelescope.org/)

 (pour lire les légendes des illustrations, posser le pointeur de la souris sur l'image)

 

 

Mots-clés :  Edwyn Hubble - télescope du Mont Palomar - Hermann Oberth - Lyman Spitzer - Agence Spatiale Européenne ESA - navette Discovery - télescope spatial James Webb - comète Shoemaker-Levy - exoplanètes - Fred Zwicky - matière noire - optique adaptative

 (les mots en blanc renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog :

 

1. matière noire et énergie sombre

2. distance et durée des âges géologiques

3. les galaxies

4. Big bang et origine de l'Univers

5. Edwin Hubble, le découvreur

6. l'expansion de l'Univers

7. juste après le Big bang

8. planètes extrasolaires

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

dernière mise à jour : 17 février 2015

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
13 avril 2014 7 13 /04 /avril /2014 15:34

 

 univers-2.jpg

 

 

 

 

 

 

 

 

     Le sujet – immense s’il en est – de cet article est en réalité déjà contenu dans le blog puisque les différentes phases de la vie de l’univers ont été abordées les unes après les autres, à l’aune, évidemment, de nos connaissances actuelles. Récemment, toutefois, un lecteur me faisait remarquer que, à travers des articles parfois relativement spécifiques, il n’était pas si aisé que cela d’obtenir une vue d’ensemble de l’histoire de cet univers dont nous sommes une infinitésimale partie : il n’est donc pas vain de proposer une nouvelle approche plus globale, étant entendu que seront mentionnés chaque fois que possible les approfondissements présents dans les textes déjà publiés.

 

 

Le Big bang

 

     La question du début de notre univers passionna et divisa les scientifiques jusqu’à il y a peu, opposant les tenants d’un point originel, le Big bang, suivi d’une expansion à ceux qui croyaient à un univers stationnaire et en équilibre permanent. Aujourd’hui, grâce à des preuves indirectes indiscutables (la présence d’un rayonnement fossile et la preuve big-bang-carre-noir.jpgdu caractère expansionniste de cet univers), la théorie du Big bang n’est plus réellement remise en cause, confortant ainsi la géniale intuition de l’abbé Lemaître. Mais comment comprendre que la matière puisse provenir… de rien ? C’est la raison pour laquelle, nombre de cosmologistes imaginent volontiers que le début de notre univers correspond probablement à la fin d’un autre, voire à des univers multiples : c’est la théorie des multivers. Dans cette optique, il n’y a ni début, ni fin et le temps est éternel. Mais comment savoir puisque que notre physique ne s’applique plus aux tous premiers instants du Big bang ? La réponse n’est probablement pas à notre portée.

 

     Revenons à notre univers et à son début. Les équations nous le disent : son commencement est celui d’une sorte de minuscule soupe quantique où n’existe qu’une obscurité totale et où il n’y a encore ni gravité, ni espace, ni temps. Il subit tout d’abord une extraordinaire phase d’expansion, appelée « inflation cosmique », probablement très tôt, vers 10-35 seconde, luiinflation.jpg permettant de grossir énormément d'un seul coup (une très sérieuse preuve indirecte du phénomène semblait avoir eté apportée par de nouvelles observations le 17 mars 2014 mais il s'agissait d'une fausse alerte comme on pourra le lire en fin de cet article 1). L’univers du début est dans un état étrange où se mêlent matière (ou ce qui en tient lieu), espace et temps mais cela dure peu : jusqu’à 10-11 seconde car l’univers grossit en se dilatant. Qui dit expansion, dit refroidissement et se forment alors les premiers photons (les particules de lumière) que la densité de ce magma empêche néanmoins d’être libérés : de ce fait, la lumière reste intimement liée à la matière et l’obscurité toujours totale. La conséquence en est que la matière ne peut s’effondrer sur elle-même tandis que la lumière, prisonnière de cette matière, n’éclaire rien et, plus encore, empêche l’organisation de cette dernière qui n’aboutira donc que beaucoup, beaucoup plus tard aux étoiles et aux galaxies...

 

     Cet univers opaque et hyperdense continue néanmoins son expansion et donc son refroidissement. Signalons au passage que notre esprit a toujours tendance à se référer à ce qu’il connaît or nous vivons dans un monde matériel où l’espace-temps est l’élément principal. Difficile donc de comprendre que cette expansion de l’univers puisse se faire dans… rien. Pas dans du vide – il est fondamental de le souligner - mais dans rien… puisque l’univers crée l’espace au fur et à mesure qu’il grossit…

 

     Cette expansion dans l’obscurité va durer exactement 380 000 ans.

 

Pour en savoir plus :

* Big bang et origine de l’Univers

* avant le Big bang

* l’expansion de l’Univers

 

 

Et la lumière fut

 

     L’Univers s’étendant, il se refroidit. Lorsque sa température tombe aux alentours de 3000 degrés, un événement immense se produit : l’agitation des particules due à la chaleur ralentit et les électrons jusque-là englués dans la soupe primitive peuvent enfin se lier aux noyaux atomiques dans ce que l’on appelle la « recombinaison », libérant par contrecoup les photons dans une espèce de flash gigantesque qui provient de partout et va dans toutes les directions. L’Univers est devenu transparent et sort de l’obscurité totale. Longtemps, cette vision des prémices de l’Univers fut contestée, ses détracteurs arguant du fait qu’il ne s’agissait que d’une belle théorie sans l’ombre d’une preuve. Jusqu’en 1965, date à laquelle deux ingénieurs américains, Penzas et Wilson (prix Nobel en 1978 pour fond diffus cosmologique 2leur découverte) mirent en évidence (totalement par hasard comme souvent en science) le fond diffus cosmologique, résidu lumineux correspondant à ce flash de début. Du coup, les autres théories devinrent caduques, incapables d’expliquer le phénomène observé. Ajoutons que les progrès techniques se développant, les derniers satellites d’observation spécialisés nous ont donné d’extraordinaires images de ce flash, jusqu’à espérer, en analysant ses moindres variations, pouvoir interpréter visuellement ce qu’il s’est passé avant (notamment l’inflation évoquée plus haut) !

 

     Après être sorti brutalement de l’obscurité complète, l’Univers va y retourner quelque temps puisque, une fois dissipée cette première émission de photons, il n’existe pas encore de sources de lumière dans cet Univers déshabité. C’est la matière, elle aussi « libérée », qui va peu à peu s’organiser et sortir progressivement l’ensemble de la nuit. En effet, suite à cette première seconde d’existence, la soupe primordiale du début, mélange d’atomes, d’électrons et de photons agglomérés, a forcément présenté quelques irrégularités, des grumeaux d’origine quantique. La matière une fois libérée, ces grumeaux vont former des pôles d’hyperdensité qui vont attirer le reste de cette matière (en fait d’immenses filaments de gaz) et entraîner par concentration de celle-ci la formation des premières étoiles, les étoiles « primordiales » (dites de population III). Nous sommes alors à environ + 600 000 ans.

 

     Cette première génération d’étoiles n’est pas semblable à celle que nous connaissons aujourd’hui. Ce sont des géantes monstrueuses pouvant atteindre jusqu’ 1000 fois la taille du Soleil (alors que, de nos jours, les plus grosses dépassent difficilement 80 fois sa taille). Ces étoiles n’ont qu’une vie très courte en raison même de leurs dimensions : quelques millions d’années au plus, ce qui explique pourquoi elles ont complètement disparu de nos cieux actuels. Toutefois, ces étoiles primordiales sont d’une importance capitale car c’est en leur sein que furent fabriqués les premiers éléments lourds comme le fer, l’oxygène ou le carbone alors quegeante-bleue-Alcyon.jpg l’univers ne contenait jusque là que de l’hydrogène et de l’hélium : sans elles, aucune chance de voir apparaître nos mondes actuels et donc la Vie.

En explosant, les étoiles primordiales vont ensemencer l’Univers et provoquer la création de myriades d’étoiles plus petites mais aussi plus durables.

 

     Les étoiles primordiales ont un autre rôle très important : la réionisation. De quoi s’agit-il ? Nous avons dit que d’énormes quantités de gaz stagnaient dans l’univers. Les photons provenant des toutes nouvelles étoiles vont, en les heurtant, entraîner l’ionisation de ces nuages gazeux épars (c'est-à-dire que les atomes de gaz vont perdre ou gagner des électrons devenant ainsi des ions) et conduire à un univers parfaitement transparent. Ce nouvel état de clarté, une fois la réionisation terminée, se situe vers 1 milliard d’années.

 

     Les premières galaxies s’organisent, riches en étoiles nouvelles au point que, quelques milliards d’années plus tard, l’Univers, encore jeune, sera au sommet de son éclat.

 

Pour en savoir plus :

* fonds diffus cosmologique

* juste après le Big bang

* les premières galaxies

* les étoiles primordiales

* HD 140283, retour sur les étoiles primordiales

 

 

 

Une brillance maximale

 

     Après 5 milliards d’années de son existence, l’univers va se trouver au maximum de sa lumière. En effet, la naissance d’étoiles, sous l’effet de la gravitation dans les nuages de gaz galactiques, bat son plein. Des galaxies encore jeunes, riches en étoiles bleues, il va s’en créer des milliards, chacune contenant plusieurs centaines de milliards d’étoiles plus ou moins semblables à notre Soleil. Mais où va-t-il, cet univers ?

 

     L’univers, on l’a déjà dit, est en expansion mais en expansion jusqu’où, ou plutôt, jusqu’à quand ? Les astronomes en étaient persuadés : cette expansion allait se ralentir et peut-être même s’arrêter. Un peu comme un véhicule dont on a lancé puis coupé le moteur et qui continue sur sa seule force acquise. D’ailleurs, c’est bien ce qu’explique la théorie de la relativité générale d’Einstein. Arrêtons-nous-y un bref instant. Avec cette théorie (en réalité, plus qu’une théorie car démontrée par des preuves directes), l’univers est plat et soumis aux forces de la gravitation qui fait s’attirer les objets, des plus petits vers les plus grands. Einstein pensait que l’univers était stable et homogène. Du coup, pour que son modèle soit ainsi, il lui fallait introduire dans ses équations une force s’opposant exactement à la gravitation, une force qu’il appela « constante cosmologique » : alors, son univers était en équilibre. Plus tard, il jugea cette introduction comme « la plus grande erreur de sa carrière » mais il n’avait pas totalement tort. En effet, les scientifiques cherchèrent par la suite à « mesurer » le ralentissement de l’expansion de l’univers dû aux forces de gravitation et là, patatras ! Ils eurent beau faire et refaire leurs calculs, tous aboutirentExpansion_of_the_Universe-copie-1.jpg à la même conclusion : non seulement, l’expansion de l’univers ne ralentit pas mais, au contraire, elle s’accélère ! Mais comment est-ce possible ? Quelle est donc cette force qui s’oppose et même semble prendre le dessus sur la gravitation ?

 

Pour en savoir plus :

* théorie de la relativité générale

* les galaxies

* pulsars et quasars

 

 

Matière noire et énergie sombre

 

     A vrai dire, l’incohérence de certaines constatations ne date pas d’aujourd’hui. En réalité, en 1933, un astronome américain du nom de Zwicky qui étudiait des galaxies bien spécifiques trouva que celles-ci tournaient beaucoup trop vite sur elles-mêmes compte tenu de leur masse lumineuse observée. Il en avait conclu qu’il existait autre chose, une sorte de matière invisible seule à même d’expliquer le paradoxe en question. Comme souvent en science, il eut tort d’avoir raison trop tôt et ses observations furent négligées par la communauté scientifique. Ce n’est que bien plus tard, dans les années 70, qu’on se replongea dans les chiffres et ceux-ci sont formels : 23% de la matière sont concernés par des éléments sur lesquels nous ne savons rien et on appelle cette inconnue « matière noire ». Pis encore, les équations nous révèlent que 73% de l’univers sont représentés par une « énergie » que, faute de savoir ce qu’elle est, on matiere-noire-vs-energie-noire.jpgappelle énergie sombre. Du coup, la matière telle qu’on la connaît (du plus petit grain de sable à la plus gigantesque des étoiles) ne représente que 4% de l’univers. Voilà une notion qui fait désordre pour des scientifiques qui veulent « décrypter » le monde qui les entoure… mais qui explique parfaitement l’accélération de l’expansion de l’univers, l’énergie sombre contrebalançant avec succès les forces gravitationnelles.

 

Pour en savoir plus :

* matière noire et énergie sombre

 

 

Le retour vers la nuit

 

     Aujourd’hui, l’univers est âgé de 13,8 milliards d’années et notre Soleil brille dans notre galaxie, la Voie lactée, depuis environ 4,5 milliards d’années. L’univers s’étant beaucoup dilaté depuis les 5 à 7 milliards d’années où nous expliquions qu’il était à son maximum de lumière, nos cieux nocturnes sont probablement un peu moins lumineux qu’à cette époque. Il est néanmoins possible d’observer, grâce à des instruments performants comme le télescope spatial Hubble, des milliards de galaxies dans toutes les directions. Et ces galaxies sont d’autant plus jeunes qu’elles sont plus lointaines. Par exemple, dans ce que l’on appelle le « ciel lointain de Hubble », on peut voir des galaxies bleutées car riches en étoiles jeunes dont la lumière nous parvient seulement maintenant après avoir voyagé des milliards d’années à travers les espaces immenses du cosmos. Ces galaxies n’existent plus ou du moins pas comme nous les voyons aujourd’hui. D’ailleurs, si un habitant de ces galaxies pouvait observer la nôtre, il la verrait en ce moment comme elle était lors de sa prime jeunesse. Cela parce que l’espace est si étendu et que la lumière ne voyage qu’à environ 300 000 km/s.

 

     L’univers, a-t-on dit, est en expansion et celle-ci s’accélère. De ce fait, les galaxies s’éloignent donc de nous de plus en plus vite. Toutes ? Non, car il en existe certaines qui sont proches (relativement) de nous et pour celles-là la gravitation prédomine. Elles forment le « groupe local », un ensemble d’une cinquantaine de galaxies dont les deux plus grosses sont la nôtre et la galaxie d’Andromède située à environ 2,5 millions d’années-lumière de nous (la proche banlieue en termes galactiques). Cette dernière fusionnera avec la Voie lactée dans un peu plus de 3 milliards d’années. Mais les autres, celles qui ne font pas partie de notre groupe local ? Eh bien, elles s’éloignent inéluctablement, d’autant plus vite qu’elles sont plus loin comme en témoignent leurs spectres lumineux décalés vers le rouge par l’effet Doppler. Viendra un temps où l’univers sera si vaste et son expansion si rapide que la lumière de ces galaxies qui s’éloignent ne nous parviendra même plus !

 

     Dans un temps incommensurablement lointain, 100 milliards d’années, l’univers 7 fois plus vieux qu’aujourd’hui verra les galaxies des groupes locaux (le nôtre et ceux des galaxies plus lointaines) fusionner pour ne plus former à chaque fois qu’une gigantesque supergalaxie. La Terre aura depuis longtemps disparu mais s’il existe un observateur sur une planète de super-galaxy_1280x800-0102.jpgce temps là, il verra dans son ciel à peu près autant d’étoiles que nous en voyons aujourd’hui. En revanche, ses instruments d’optique auront beau scruter au-delà de sa supergalaxie, ils ne distingueront rien de plus : les autres supergalaxies seront hors de portée. Cet observateur se retrouvera alors dans la situation dans laquelle nous étions vers les années 1920 : il aura l’impression que rien n’existe en dehors de sa galaxie mais lui n’aura plus aucun moyen de rectifier son jugement. Comment pourra-t-il alors interpréter l’univers alors que le fond diffus cosmologique ne sera pratiquement plus perceptible tant il aura été atténué par l’éloignement ?

 

     Puis viendra ensuite le temps où les étoiles n’auront plus suffisamment de matière pour se former si ce n’est, exceptionnellement, qu’à partir de la fusion de quelques naines brunes qui ne sont que des étoiles avortées. L’espace continuant à se dilacérer, même la matière disparaîtra ou sera absorbée par les derniers trous noirs centraux des dernières supergalaxies… Ne subsistera plus que le vide immense d’un espace sans matière.

 

     Il existe pourtant un scénario alternatif dont nous ne savons pas s’il est envisageable puisque nous n’avons aucune idée de ce qu’est et ce que pourrait devenir cette matière noire. Effectivement, si la force de cette dernière venait à diminuer, la gravitation reprendrait certainement son influence. Dans cette éventualité, l’expansion de l’univers ralentirait puis stopperait pour, enfin, s’inverser : les galaxies se rapprocheraient à nouveau les unes des autres jusqu’à peut-être, après des milliards et des milliards d’années, finir par fusionner avant que la matière se condense et se replie sur elle-même dans ce que l’on appelle le « Big crunch », exact décalque inversé du Big bang. Nous ne pouvons donc pas encore savoir ce que sera ce lointain avenir mais que l’on se rassure toutefois : il s’agit  de projections théoriques qui, en aucun cas, ne peuvent nous concerner. Nous parlons en effet de dizaines de milliards d’années alors que, de toute façon, l’espérance de vie d’une espèce de mammifères comme homo sapiens ne se compte – au mieux – qu’en quelques dizaines de millions d’années. S’il ne s’est pas, d’une manière ou une autre, autodétruit auparavant.

 

 Pour en savoir plus :

                * la fin de l'univers

 

 

les ondes gravitationnelles mises en évidence en mars 2014 :

... Les théo­riciens prévoient que les ondes gravitationnelles primordiales, si elles existent, ont perturbé la lumière originelle, émise il y a 13,8 milliards d'années, en lui imprimant une polarisation particulière, c'est-à-dire une façon d'osciller extrêmement caractéristique. Comme nous baignons toujours dans ce rayonnement, qui s'est considérablement refroidi avec le temps, il est possible de l'étudier. Nous avons donc braqué un radiotélescope au pôle Sud sur une petite portion de ciel très propre afin d'étudier avec précision la polarisation de ce rayonnement fossile. Et nous avons trouvé le signal que nous espérions ...

... Leur origine (des ondes gravitationnelles, ndlr) est liée à un moment clé de la naissance de l'Univers. Une fraction de seconde après le big bang, l'Univers a connu une phase d'expansion extrêmement rapide. Pendant un milliardième de milliardième de milliardième de seconde, l'Univers a grossi d'au moins un million de milliards de milliards de fois. Ce sont des chiffres qui échappent totalement à l'imagination. La plupart des physiciens, moi y compris, peinons à nous représenter de telles échelles. Nous comprenons ce que nous disent les mathématiques, mais cela reste difficile à appréhender avec nos sens. Pendant cette période, appelée «inflation», les paires de particules et d'antiparticules qui apparaissent et s'annihilent en principe instantanément dans le vide quantique ont été séparées par cette dilatation extrêmement brutale de l'espace-temps. Cela s'est notamment produit pour le graviton, la particule hypothétique qui véhicule la gravité, et son antiparticule, l'antigraviton. C'est ce mécanisme d'arrachement qui serait à l'origine des ondes gravitationnelles ...

 

(extraits de l'interview accordée le 18 avril 2014 au journal le Figaro par Clement Pryke, un des deux codécouvreurs des ondes gravitationnelles résiduelles le 17 mars 2014)

 

 

Non, les ondes gravitationnelles n'ont pas été détectées !

 

   Contrairement à ce qui avait été annoncé en mars 2014 par la collaboration américaine Bicep2, les traces laissées par les ondes gravitationnelles émises à l'issue du Big Bang n'ont pas été détectées, révèle aujourd'hui la collaboration européenne Planck.

   En réalité, ces "traces" de ces ondes gravitationnelles détectées dans le rayonnement fossile par l'équipe Bicep2 n'en sont pas : il s'agit simplement de signaux générés par la poussière galactique, cette poussière qui circule en permanence dans notre Voie Lactée. Un résultat obtenu grâce à une analyse poussée des données qui avaient conduit à cette annonce, augmentées et enrichies par les observations réalisées par le satellite Planck.

 

 (le Journal de la Science, 20 avril 2015 / extraits)

(http://www.journaldelascience.fr/espace/articles/non-ondes-gravitationnelles-big-bang-nont-pas-ete-detectees-4525)

 

Sources :

1. Wikipedia France

2. Science & Vie, Hors Série n°266, mars 2014

3. Encyclopediae Universalis

4. Encyclopediae Britannica

 

 

 

Images :

1. l'Univers (source : favim.com)

2. carré noir (source : www.cocqsida.com/mediatheque)

3. expansion de l'univers et inflation (source : drericsimon.blogspot.com)

 4. fond diffus cosmologique (source : cieletespace.fr)

5. géante bleue (source : fr.wikipedia.org)

6. expansion de l'univers (source : en.wikipedia.org)

7. composants de l'univers (source : www.terre-univers.be)

8. supergalaxie (source : www.wallpaperstop

(pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

 

 
Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

mise à jour : 16 novembre 2016

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
4 janvier 2014 6 04 /01 /janvier /2014 17:05

 

 

 

 

 venus2

 

 

 

 

     L’étoile du berger n’est bien sûr pas une étoile mais une planète et cette planète c’est Vénus, une proche voisine de la Terre… Et, lorsqu’on compare les caractéristiques de ces deux astres, on ne peut que se rendre compte de leur ressemblance, presque de leur similitude, par rapport au reste du système solaire : on pourrait quasiment évoquer deux planètes sœurs et pourtant ! Si la Terre est une planète accueillante pour la Vie, si elle est une sorte de paradis pour elle, c’est tout le contraire pour Vénus. Cette dernière est un véritable enfer où la Vie telle que nous la connaissons n’a eu - et n’aura - absolument aucune chance d’apparaître. Comment cela est-il possible ? Pourquoi des destins si différents pour des objets au départ presque identiques ?

 

 

La planète de l’Amour, contresens historique…

 

     Dans la mythologie romaine, Vénus est la déesse de l’amour et de la beauté (Aphrodite dans la mythologie grecque) et, à ce titre, elle a une place importante dans le monde occidental et singulièrement en France dans la thématique amoureuse. Puisque la planète Vénus est un des astres les plus brillants du ciel (c’est même le troisième objet le plus brillant) et un des premiers à apparaître dans le ciel du soir, il n’est donc pas étonnant qu’on l’ait baptisé ainsi. Elle est citée dans nos jours de la semaine (ven-dredi) et est représentée par un symbole astronomique bien particulier, un cercle avec une croix pointant vers le bas, censésymbole-feminin-.jpg.png représenter le miroir à main de la déesse. En médecine, ce symbole désigne le sexe féminin (par opposition au symbole du dieu de la guerre, Mars, pour l’Homme). Détail curieux, les éventuels habitants de la planète étaient jadis appelés des Vénériens : la médecine s’étant emparée de cette terminologie pour désigner des maladies sexuellement transmissibles, on parle aujourd’hui, notamment dans les romans de science-fiction, de « Vénusiens »…

 

     Toutes les sociétés civilisées ont identifié la planète Vénus et beaucoup l’ont glorifiée ; les civilisations asiatiques (Chine, Japon, Viêt-Nam, Corée) l’ont toutes appelée « l’étoile d’or », des caractères identiques sino-japonais la symbolisant. Il en est de même pour les sociétés d’Amérique centrale comme les Nashua ou les Mayas… Ces derniers l’avaient d’ailleurs incorporée à leur calendrier solaire en ayant estimé, avec une marge d’erreur très faible (un jour pour 6000 ans), sa période synodique, c'est-à-dire le temps qu’il faut à la planète pour retrouver sa place exacte d’observation entre la Terre et le Soleil.

 

 

 Repérer Vénus dans le ciel

 

     Identifier Vénus est une chose assez aisée, même à l’œil nu. En effet, la planète étant plus proche du Soleil que notre Terre, elle le suit ou le précède toujours dans sa course et c’est la raison pour laquelle on ne peut jamais la voir en pleine nuit. Elle sera donc visible à l’ouest en début de soirée ou à l’est en fin de nuit. Comme elle dépasse en luminosité tous les autres astres (à part la Lune et bien sûr le Soleil), impossible de la manquer. Si on l’observe quelque temps, on s’aperçoit rapidement que, à la différence des étoiles, elle ne scintille pas ce qui traduit évidemment sa condition de planète. Avec des jumelles, il est encore plus facile de s’en rendre compte : Vénus grossit dans l’objectif (voire montre une simple venus-et-lune.jpgforme de croissant) tandis que les vraies étoiles, infiniment plus éloignées de nous, ne changent pas de forme. D’ailleurs, si on regarde Vénus un peu longtemps, on se rend compte assez vite qu’elle bouge par rapport au reste du ciel. Observer Vénus est souvent un spectacle magnifique, d’autant plus beau que la planète est voisine d’un autre astre de comparaison, la Lune par exemple.

 

     En raison de sa trajectoire céleste plus proche du Soleil, certaines périodes de l’année sont plus propices à son observation, quand elle est relativement « écartée » de notre étoile vue de la Terre : on appelle cet écart, l’élongation de Vénus (à titre d’exemple, la prochaine période favorable d’observation se fera entre février et mai 2014).

 

     En revanche, même avec de puissants instruments, il est impossible de distinguer à sa surface autre chose qu’une brillance uniformément blanche traduisant une épaisse atmosphère. Du coup, les auteurs de science-fiction d’il y a quelques dizaines d’années ont laissé libre cours à leur imagination puisque, au bout du compte, ces épais nuages nous cachaient la surface de la planète. C’est ainsi que dans un livre intitulé  « les fleurs de Vénus » (le Rayon Fantastique, 1960), Philippe Curval imagina un monde habité de fleurs immenses aux parfums délétères et où les colons se saluaient en déclarant « que les fleurs vous embaument » ! Ailleurs, Isaac Asimov (« les océans de Vénus », Bibliothèque Verte, 1977 sous le pseudonyme de Paul French) y décrit une Vénus colonisée et habitée, comme les autresvenus-utopie.jpg planètes du système solaire, par les Terriens tandis que A. E. Van Vogt imagine Vénus comme un monde exemplaire réservé aux meilleurs des humains « non-aristotéliciens » (« le monde des À », le Rayon Fantastique, 1953, traduction de Boris Vian). D’autres encore, comme Ray Bradbury, Stephen King ou H. P. Lovecraft l’ont décrite comme certainement habitable. Tous ces auteurs avaient tort : ils ne pouvaient bien sûr pas imaginer l’enfer vénusien, un enfer impropre à toute vie et qui ne nous est réellement connu que depuis l’envoi de sondes d’exploration spatiale.

 

 

Les sondes vénusiennes

 

     Jusqu’aux années 1960, on ne savait pas grand-chose de Vénus dont on ignorait jusqu’à la période de rotation. En 1962, c’est une sonde américaine, Mariner 2, qui, la première, va donner quelques renseignements, notamment sur la température de surface de Vénus : environ 450° ! Suivront une vingtaine de sondes, notamment la série des sondes soviétiques Venera qui décrypteront son atmosphère avant de se poser sur le sol brûlant de la planète et d’en tirer des photographies en couleurs… Dans les années 1990, la sonde américaine Magellan va dresser une venus_express.jpgcartographie complète du sol vénusien et c’est aujourd’hui la sonde européenne Vénus Express qui poursuit le travail (son programme d’exploration devant s’achever fin 2014) en analysant finement l’atmosphère et les différentes températures de surface de la planète…

 

 

Vénus, une Terre infernale

 

     La deuxième planète du système solaire présente en définitive des caractéristiques bien particulières :

 

. tout d’abord, sa rotation en fait une planète à part puisqu’elle est très lente et rétrograde (tournant donc en sens inverse des rotations du Soleil et des autres planètes), une des rares  du système solaire avec Uranus à être ainsi. Du coup, la journée qui sur Terre est de 24 heures dure… un peu plus de 116 jours terrestres et l’année vénusienne (243 jours environ) a de ce fait une durée d’un peu moins de 2 jours solaires vénusiens ! La cause de cette bizarrerie est mal comprise : soit l’origine en réside dans une collision avec un corps de grande taille qui aurait modifié sa rotation, soit Vénus a progressivement ralenti cette rotation jusqu’à l’inverser en raison de son atmosphère terriblement dense. Difficile de conclure avec certitude.

 

. l’atmosphère vénusienne, précisément, est très spéciale : elle est composée de 95% de dioxyde de carbone et de 4% d’azote, le reste se résumant à des gouttes d’eau et d’acide sulfurique. Il y existe plusieurs superpositions de couches nuageuses entre 35 et 70 km d’altitude, la dernière composée probablement de cristaux de glace ce qui confère à la planète son aspect laiteux. La conséquence de cette configuration est effroyable : la pression en surface de Vénus est de 92G, c'est-à-dire 92 fois supérieure à la nôtre, tandis que règne un effet de serre maximal, les rayons du Soleil une fois passée la barrière nuageuse ne pouvant ressortir que très partiellement.  Voilà pourquoi, bien que située deux fois plus loin du Soleil que Mercure, la température y est deux fois plus élevée. On comprend donc qu’il s’agit là d’un climat plutôt hostile à la Vie et qu’il paraît assez peu vraisemblable qu’on puisse y envoyer durablement une mission habitée…

 

. la surface vénusienne, quant à elle, est composée pour plus des trois-venus-surface.jpgquarts par des plaines d’origine volcanique sans grand relief. Pour le reste, ce sont des sortes de plateaux montagneux regroupés en deux endroits, Ishtar Terra dans le nord (dont les sommets atteignent quand même 11 000 mètres), un territoire plus étendu que l’Australie, et Aphrodite Terra à l’équateur. Si Vénus avait eu (ou conservé) des océans, nul doute que l’on aurait eu là l’équivalent de continents terrestres ;

 

. enfin, il existe sur Vénus un volcanisme résiduel qui ne s’exprime plus en venus-surface2.jpgsurface depuis plusieurs millions d’années et

 

. détail important, contrairement à la Terre, elle ne possède pas de satellite naturel.

 

     Au total, la description que nous venons de faire de cette planète semble l’éloigner considérablement de celle qui, si hospitalière, nous abrite. Pourtant leurs différences, du moins à l’origine, n’étaient pas si marquées.

 

 

Deux sœurs aux destins différents

 

     La Terre et Vénus sont deux planètes dont les similitudes sont nombreuses ; on a même parlé de «sœurs jumelles » tant à cause de leur voisinage orbital que de leur aspect physique.  Et il est vrai que ces deux astres ont beaucoup en commun :

 

. d’abord, elles sont proches l’une de l’autre et gravitent dans ce que l’on appelle la « zone habitable du système solaire », c'est-à-dire un endroit ni trop près, ni trop loin du Soleil, susceptible de permettre l’apparition de la Vie telle que nous la connaissons (voir le sujet : vie extraterrestre 2ème partie) ;

 

. d’autre part, leurs tailles et leurs masses sont comparables : Vénusvenus-terre comparaison représente 95% de la taille de la Terre pour 80% de sa masse ;

 

. on sait aussi que ces deux planètes sont nées en même temps dans le même nuage de poussière et de gaz il y a un peu plus de 4,5 milliards d’années ;

 

. à présent que, grâce aux sondes, on connait mieux la surface de Vénus, on a pu constater que, comme la Terre, Vénus possède relativement peu de cratères d’impact ce qui souligne la jeunesse de sa surface, remaniée récemment par le volcanisme et peut-être aussi par une forme de tectonique des plaques. C’est ainsi que les deux planètes montrent des surfaces diversifiées avec des plaines, des montagnes, des plateaux, des ravins, etc. De la même façon, toutes deux possèdent un noyau métallique central de grandeur voisine même si Vénus ne possède qu’un champ magnétique très faible, probablement en rapport avec sa si lente rotation ;

 

. une autre caractéristique commune est leur composition chimique presque identique. S’il n’y avait pas cet effet de serre qui rend l’endroit inhabitable, il y a gros à parier qu’on pourrait exploiter sur Vénus à peu près les mêmes minéraux et matériaux que sur Terre…

 

     Et pourtant, l’une abrite la Vie et l’autre est un monde désolé et inamical…

 

 

Vénus, une Terre qui n’a pas réussi

 

     Vénus n’a pas « réussi » si, bien entendu, on part du principe – auquel je crois – que la Vie est une réussite adaptative à un environnement donné. Pourquoi un tel échec ?  Plusieurs raisons viennent spontanément à l’esprit mais il en est sûrement d’autres et, d’ailleurs, comme toujours en science, il y a probablement intrication de plusieurs d’entre elles.

 

     L’eau liquide - on a souvent eu l’occasion de le répéter - est indispensable à l’apparition de la Vie et de l’eau, sur Vénus, il y en certainement eu au début. Sauf que la planète peut-être située un peu trop près de son étoile n’a pas su la retenir. A moins que le choc probable ayant ralenti et inversé sa rotation ait créé les conditions de l’abominable effet de serre qui a tout stérilisé. Ou que la présence d’un gros satellite régulateur comme notre Lune ne soit un élément fondamental de l’habitabilité d’une planète de ce type. Nous ne le saurons probablement jamais.

 

     Pour l’esprit humain, il n’est pas toujours facile de prévoir le devenir astronomique d’une situation donnée : Vénus, en effet, aurait pu être une seconde Terre… Et, des Vénus, il y en certainement des milliards dans notre galaxie (la Voie lactée n’étant qu’une parmi des milliards d’autres galaxies) mais, à l’inverse, je suis statistiquement certain qu’existent d’autres Terres abritant la Vie (une Vie certainement différente de celle que nous connaissons) car les mêmes causes produisent les mêmes effets. C’est la raison qui le veut.

 

 

 

 Sources

 

1. revue Science & Vie

2. revue ciel et espace

3. Wikipedia.org

4. beaulieu.free.fr

 

 

Images

 

1. la planète Vénus (sources : jmm45.free.fr)

2. symbole de Vénus (sources : francestickers.com)

3. conjonction Lune-Vénus (sources : cidehom.com)

4. une Vénus utopique (sources : erenouvelle.fr)

5. la sonde Vénus Express (sources : astro-rennes.com)

6. surface de vénus observée par la sonde Magellan (sources : nasa.gov)

7. vue d'artiste d'un crépuscule vénusien (sources : Walter Myers, arcadiastreet.com)

8. comparaison Terre-Vénus (sources : planetes-univers.kazeo.com)

 (pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

 

Mots-clés : déesse vénus - période synodique (d'une planète) - élongation de Vénus - Isaac Asimov - A. E. Van Vogt - sonde Mariner 2 - sondes Vénera - sonde Vénus Express - rotation rétrograde - effet de serre - zone habitable du système solaire

 

 (les mots en blanc renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

 

1. vie extra-terrestre (1)

2. vie extra-terrestre (2)

3. l'origine de la Vie sur Terre

4. origine du système solaire

 

 

  

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
5 octobre 2013 6 05 /10 /octobre /2013 19:24

 

 

 

 

 voie-lactee-centre--Serge-Brunier-.jpg

 

 

 

 

 

 

 

 

     Longtemps, l’existence même de trous noirs fut contestée par les scientifiques qui y discernaient une théorie sans l’ombre d’une preuve. Il faut dire que, par définition, il est impossible de « voir » un trou noir puisque ce type d’objets astronomiques est le tombeau de toutes choses : même la lumière qu’ils absorbent ne ressort jamais. Restaient les signes indirects prédits par la théorie ou, pour dire autrement, les conséquences de la présence du trou noir sur son environnement.

 

     Jusque vers la moitié du siècle dernier, on se perdait en conjectures et la croyance ou non en ce phénomène étrange dépendait totalement du scientifique concerné. Aujourd’hui, il n’est plus guère d’esprits sérieux qui contestent leur existence. La plupart des scientifiques sont même persuadés qu’il existe un trou noir massif au centre de chaque galaxie tandis que d’autres, bien plus petits, parsèment l’espace galactique. Toutes les galaxies ? Donc aussi la nôtre ? Eh oui, et « notre trou noir central » s’appelle Sagittarius A : nous allons essayer de le décrire.

 

 

 

Trous noirs

 

 

     Avant d’examiner ce que nous savons du nôtre, il convient néanmoins de brièvement revenir sur ce qu’est réellement un trou noir (pour des informations plus complètes, on se reportera au sujet spécifique déjà traité ici).

 

 

Origine des trous noirs

 

     Tout commence avec les fins de vie des étoiles les plus grosses. On a déjà évoqué la mort d’étoiles comme notre Soleil, une naine jaune, qui terminent leur existence sous la forme d’une géante rouge dont le cadavre devenu secondairement une naine blanche s’éteindra peu à peu. Les étoiles de plus de huit fois la masse du Soleil ne suivent pas cette voie : leur supernova-1994-galaxie-NGC4526.jpgcarburant épuisé, elles se transforment en supernovas qui, d’un coup, illuminent toute leur galaxie (pourtant composée de milliards d’étoiles) durant plusieurs semaines tant la débauche d’énergie est alors importante. Une fois le phénomène dissipé, on ne trouvera plus à la place de l’astre mourant que son cœur, une petite sphère résiduelle de quelques dizaine de km mais concentrant tant de matière que seuls des neutrons pourront y subsister effroyablement comprimés : c’est une « étoile à neutrons ».  Ce reste d’étoile est souvent le siège d’un champ magnétique intense et, animé d’une rotation plus ou moins rapide, il enverra dans l’espace un signal régulier : on parlera alors de pulsar.

 

     Mais – et c’est le but de ce bref retour sur leurs fins de vie – certaines de ces étoiles sont si grosses que même une transformation en étoile à neutrons n’est pas possible. Lorsqu’un astre dépasse de plus de quarante fois la masse de notre Soleil, son cœur résiduel est alors gros comme trois fois notre étoile : la matière dégénérée qu’il contient ne peut plus s’opposer aux forces gravitationnelles et ce cœur instable s’effondre sur lui-même formant un trou noir, c'est-à-dire un endroit dont plus rien ne peut ressortir, pas même la lumière. Que devient-elle cette matière ainsi « phagocytée » et sur quoi peut bien donner cet endroit si particulier ? Nul ne le sait et notre physique traditionnelle n’y a pas cours…

 

 

Différents types de trous noirs

 

     On pense que, rien que dans notre galaxie, il existerait ainsi plusieurs dizaines de millions de trous noirs dits « stellaires » car provenant de l’effondrement sur elles-mêmes d’étoiles massives. Le plus souvent, ce sont binaire-a-trou-noir.jpgdes sources intenses de rayons X, preuve de la destruction de la matière, qui trahissent la présence de ces astres obscurs. Fréquemment, un trou noir est couplé à une autre étoile avec laquelle il forme un couple bizarre puisque l’étoile visible semble isolée et c’est uniquement le rayonnement X qui trahit ce compagnon prédateur au fur et à mesure qu’il lui arrache la matière qui la constitue…

 

     Mais il existe un deuxième type de trous noirs, bien plus gigantesques, les trous noirs centraux des galaxies. Ici, nous avons affaire à des montres cosmiques qui ont grossi au fil du temps en avalant toute la matière à leur portée, étoiles, nuages de gaz, etc. Les scientifiques estiment ainsi que, en dix milliards d’années ce qui est à peu près l’âge de la plupart des galaxies, un trou noir central peut atteindre jusqu’à un milliard (voire plus) de masses solaires et devenir aussi volumineux que notre système solaire tout entier !

 

 

Mettre en évidence un trou noir

 

     Il est possible de repérer les alentours d’un de ces trous noirs géants en recherchant les phénomènes qui trahissent sa présence ; pour cela, il est nécessaire que le monstre soit actif et phagocyte de la matière, par exemple une étoile qui passerait imprudemment trop près de lui ; alors, cette matière qui s’échauffe au contact du trou noir va illuminer l’endroit avant de disparaître à jamais dans le néant.

 

     Lorsqu’on regarde les galaxies lointaines et donc vers le passé, on se rend compte que ces dernières abritent très souvent des sources lumineuses incroyablement intenses (jusqu’à 1000 milliards de fois la lumière solaire), des jaillissements de lumière qu’on appelle des quasars tant ils ressemblent à des étoiles (quasi-stars) mais à une autre échelle : il s’agit des trous noirs des débuts des temps galactiques brillant de millequasar-3C186.jpg feux car ils dévorent (ou plutôt dévoraient) des armées d’étoiles. Plus proches de nous, les trous noirs galactiques centraux sont beaucoup plus sages, entourés qu’ils sont par le « no man’s land » qu’ils ont eux-mêmes généré… Et c’est bien le cas de « notre » trou noir, celui qui siège au sein de la Voie lactée, et qu’on a appelé Sagittarius A (ou encore plus simplement Sgr A*).

 

 

 

Sagittarius A

 

 

     De l’endroit où nous nous trouvons, en périphérie, nous voyons notre galaxie par la tranche sous la forme d’une trainée blanchâtre, floue et laiteuse, la Voie lactée. Le véritable centre de la Galaxie (Galaxie avec un G signifie, par convention, que c’est la nôtre) se trouve dans la direction de la constellation du Sagittaire et il ne peut pas être visible tant il existe entre lui et nous quantité de poussières cosmiques et de bancs de gaz infranchissables par la lumière (on estime que seul un photon sur mille milliards arrive à traverser un tel obstacle). Heureusement, il reste d’autres rayonnements permettant l’observation : rayonnements radio, infrarouge, gamma ou rayons X. Les radiotélescopes et les satellites artificiels peuvent dont étudier le centre de la Galaxie…

 

     Précisons d’emblée que l’étude de « notre » trou noir est rendue particulièrement ardue du fait que celui-ci est actuellement très peu actif et donc peu « visible ». C’est dans une région relativement réduite (moins de 30 années-lumière) que fut mise en évidence, dans les années 90, unesagittarius-a.jpg intense source d’ondes radio au centre de la Voie lactée. Après avoir éliminé toutes les causes possibles d’une telle émission (pulsars, restes de supernovas, etc.), seule l’existence d’un trou noir pouvait expliquer le phénomène. Une preuve supplémentaire fut apportée les années suivantes lorsque, leurs instruments devenant encore plus performants, les scientifiques purent observer individuellement les étoiles gravitant à proximité de cette zone ; celles-ci sont si proches du trou noir qu’elles orbitent autour de lui en quelques dizaines d’années. L’une d’entre elles, baptisée S2, va même jusqu’à faire un tour complet de l’endroit en seulement 15 ans. Du coup, en observant avec précision les orbites de ces étoiles et selon la troisième loi de Kepler, il est devenu possible d’estimer la masse de l’objet central : 4,3 millions de masses solaires, le tout compris dans un espace de 0,5 à 1 unité astronomique (UA). Pour mémoire, rappelons qu’une UA est la distance séparant la Terre du Soleil, soit un peu moins de 150 millions de km : en somme, ce trou noir central a une taille qui, dans notre système solaire, pourrait l'amener à l’orbite de notre planète. On comprend donc qu’une masse si colossale en un espace si réduit (en termes astronomiques évidemment) ne peut être qu’un trou noir et c’est Sgr A*.

 

     Notre trou noir est situé à environ 26 000 années-lumière de nous ce qui veut dire, en d’autres termes, que ce que nous voyons de lui aujourd’hui est une image datant de 26 000 ans. A cette époque, sur Terre, c’était le paléolithique supérieur, au moment de la fin de l’aurignacien (ou pour être plus précis du gravettien qui venait de lui succéder). Il commençait à faire chauvet-grande-fresque.jpgtrès froid car c’était le début de la dernière glaciation ; Homo Sapiens s’était lancé dans l’élaboration de vrais outils en silex et décorait des grottes avec des représentations figuratives qui étaient déjà des œuvres d’art.

 

     Or, il y a 26 000 ans, un nuage de gaz lourd comme trois fois la Terre a commencé à s’enrouler autour de Sagittarius et, tombant vers lui, l’a en quelque sorte « réveillé », lui si tranquille que les astronomes le rangent parmi les trous noirs les plus calmes jamais observés. Eh bien, ce calme risque de disparaître puisque c’est seulement à présent que nos instruments peuvent capter cet événement si particulier.

 

     En effet, il y a deux ans, en 2011, les astronomes travaillant sur le VLT (Very Large Telescope du désert d’Atacama, au Chili) ont repéré une sphère gazeuse d’une masse équivalente à trois fois la Terre, nommée par eux G2, et qui semblait se diriger droit sur Sgr A*. Les calculs s’affinant, les scientifiques purent confirmer que, cette nuée gazeuse massive s’approchant à environ 40 milliards de km de Sgr A*, les forces d’attraction de ce dernier devraient être suffisantes pour attirer au moins une partie du gaz. Dès lors, on sait en principe ce que l’on observera : avant d’être happée par le trou noir et disparaître au delà de ce que l’on appelle son « horizon » (le dernier espace avant… l’inconnu), et en raison de forces de pression colossales, la matière va s’embraser en entrant dans ce que l’on trou-noir-disque-d-accretion.jpgappelle le disque d’accrétion de Sagittarius. Rappelons que le disque d’accrétion d’un trou noir est l’endroit orbital autour de lui où la matière subit de plein fouet les forces gravitationnelles ce qui l'attire inéluctablement vers le corps central. D’abord « visible » en infrarouge par simple effet thermique, la collision va illuminer progressivement le disque d’accrétion ce qui sera alors visible en rayonnement X, seul témoin de l’événement pour nous puisque la lumière intense apparaissant alors ne pourra néanmoins pas transpercer les obstacles épais nous en séparant. Ce sera la première fois que les instruments enregistreront un tel phénomène depuis que les scientifiques observent systématiquement le trou noir… d’où leur impatience. Quand cela se produira-t-il ? Eh bien entre août 2013 et le début de l’année 2014, c'est-à-dire en ce moment ! Toutefois, je le reprécise bien : nous observons aujourd’hui un événement qui s’est produit il y a 26 000 ans, vitesse limitée de la lumière oblige.

 

 

 

Une source nouvelle d’information sur les trous noirs

 

 

     Des trous noirs bien plus gigantesques sont étudiés par les scientifiques mais Sgr A* possède un énorme avantage sur les autres. Bien que modeste (pour ce que nous en savons), c’est celui de notre galaxie ce qui sous-entend qu’on peut observer son environnement proche et notamment les corps célestes qui gravitent à sa proximité (ce qu’il est impossible de faire avec les trous noirs siégeant dans les autres galaxies car le pouvoir de résolution de nos instruments est encore trop faible). De ce fait, on pourra peut-être répondre à certaines questions que se posent les astronomes : que se passe-t-il vraiment au centre de la Galaxie, un endroit peu connu car difficile à étudier ? Pourquoi notre trou noir est-il si peu actif ? Comment expliquer sa taille (relativement) réduite par rapport à certains autres trous noirs galactiques ? Sgr A* participe-t-il à la formation de nouvelles étoiles comme le suggèrent certaines théories récentes sur les rôle des trous noirs (voir le sujet : juste après le Big bang) ?

 

     On le voit, on se prend à rêver que, grâce à un événement somme toute banal survenu à un moment bien antérieur à nos civilisations actuelles, nous pourrons disposer très bientôt de renseignements particulièrement intéressants sur le trou noir central de la Galaxie (et, du coup, peut-être sur les autres). Réponse dans quelques mois.

 

 

 

 

 Brêve : le calcul de la masse d'un trou noir

 

     Décembre 2013. De nombreuses galaxies abritent en leur sein un trou noir supermassif. Un astre si dense qu'il absorbe toute ce qui passe à sa portée, même la lumière... ce qui le rend invisible. les astronomes américains du Galactic Center Group de l'UCLA (l'université de Californie) ont néanmoins réussi à caractériser celui qui trône au centre de la Voie lactée. Grâce au télescope Keck d'Hawaï, ils ont étudié les orbites de plusieurs étoiles du centre galactique. Une tache ardue car cette région, située à 30 000 années-lumière de la Terre, est masquée par un épais écran d'étoiles et de poussière. En 2013 ils ont consigné sur un relevé les positions annuelles moyennes de huit des ces étoiles centrales depuis 1995. A partir de ces tracés, la masse de l'objet central a pu être calculée. Verdict : il s'agit bien d'un trou noir supermassif - Sagittarius A* - dont la masse avoisine les 4 millions de Soleil ! Les chercheurs poursuivent leurs relevés d'année en année pour calculer précisément sa position et l'ampleur de ses mouvements dans le ciel.

(sources : d'après Science & Vie, HS n° 267, juin 2014)

 

 

 

Sources

 

1. Science & Vie, n° 1151, août 2013

2. revue ciel et espace (cieletespace.fr)

3. Wikipedia

4. www.futura-sciences.com

5. hominide.com

 

 

 

 

Images

 

1. Voie lactée (sources : Serge Brunier in science-et-vie.com)

2. supernova 1994D (sources : newyorker.com)

3. binaire avec trou noir (sources : bouillonsdecultures.blogspot.com)

4.quasar 3C186 (sources : nasa.gov)

5.Sagittarius A en ondes radio (sources : linternaute.com)

6.fresque centrale de la grotte Chauvet (sources : hominides.com/html/art/grotte-chauvet.php)

7. disque d'accrétion d'un trou noir (sources : unice.fr)

 

  (pour lire les légendes des illustrations, passer le curseur de la souris dessus)

 

 

 

Mots-clés : trous noirs - naine jaune - géante rouge - supernova - étoile à neutrons - pulsar - étoile binaire - quasar - Voie lactée - 3ème loi de Kepler - aurignacien - gravettien - horizon d'un trou noir - disque d'accrétion

 

(les mots en blanc renvoient à des sites d'information complémentaire)

 

 

  

Sujets apparentés sur le blog :

 

1. place du Soleil dans la Galaxie

2. mort d'une étoile

3. la mort du système solaire

4. les galaxies

5. trous noirs

6. pulsars et quasars

7. juste après le Big bang

8. novas et supernovas

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

Mise à jour : 5 août 2014

 

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
14 juillet 2013 7 14 /07 /juillet /2013 18:45

 

 

 

supernova-1006-remanent.jpg 

 

 

 

 

     Adolescent, je m’étais quelque peu enthousiasmé à la lecture de l’œuvre monumentale de Cordwainer Smith intitulée les « Seigneurs de l’Instrumentalité ». Cet auteur de science-fiction — aujourd’hui injustement oublié — imaginait entre autres un mode de propulsion interplanétaire assez original : d’immenses vaisseaux pouvant transporter des dizaines de milliers de passagers et mus par des voiles gigantesques activées par la lumière des étoiles… Poétique à défaut d’être réellement praticable (encore que…). Je me souviens de la remarque d’un de mes camarades d’alors : il aurait plutôt dû choisir une propulsion par les rayons cosmiques ! Sauf que ni lui, ni moi ne savions ce qu’étaient vraiment ces entités au nom pourtant alléchant… Aujourd’hui, bien des années plus tard, une grande partie du mystère a enfin été levée mais il aura quand même fallu un siècle d’observations et d’interrogations…

 

 

Une observation dérangeante

 

     La théorie en vigueur au début du XXème siècle était que plus on s’élevait dans l’atmosphère, moins on devait rencontrer d’air ionisé. Rappelons que l’ionisation consiste à modifier la charge d’un atome (ou d’une molécule) en ajoutant ou retranchant un élément, l’atome ainsi modifié étant alors appelé un ion. Jusque là, depuis sa découverte en 1900 par le physicien écossais Charles Wilson, on pensait que l’origine du rayonnement produisant ce phénomène d’ionisation était purement terrestre. Effectivement, il paraissait logique d’attribuer un tel événement aux particules radioactives émises par le sol terrestre, seules susceptibles de « ioniser » d’autres atomes.

 

     En 1912, alors âgé de 39 ans, le physicien autrichien Victor Franz Hess, embarqué avec ses collaborateurs dans un ballon d’altitude, démontra heiss-ballon-rayons-cosmiques.jpgexactement le contraire, à savoir que le rayonnement ionisé présent dans l’atmosphère terrestre ne peut être que d’origine cosmique. Heiss remarqua en effet que si l’ionisation atmosphérique décroît comme prévu par la théorie jusqu’à l’altitude de 700 m, elle croît à nouveau au-delà. Plus encore, il n’existe alors que peu de différence entre sa concentration diurne et nocturne. Il en déduisit fort logiquement que la provenance du rayonnement responsable de cet état était d’origine cosmique, c’est-à-dire extérieure au système solaire. Oui, mais d’où peut-il bien provenir, ce rayonnement, et quelle en est la nature ? Ces questions, sans cesse débattues, tiendront en haleine les scientifiques plus de cent ans. Aujourd’hui, grâce aux observations du satellite américain Fermi, lancé en 2008 et dédié à l’étude des rayons de haute énergie émis par les corps célestes, on connaît les réponses.

 

 

Nature des rayons cosmiques

 

     Chaque seconde, notre Terre est bombardée par des flots de particules dites de haute énergie tant elles sont accélérées par un phénomène resté jusque là inexpliqué. Quelles sont ces particules ? Eh bien, il s’agit de particules de matière mais de matière subatomique, c'est-à-dire – pour le dire rapidement – des morceaux d’atomes tels que protons, neutrons, électrons et noyaux atomiques (voir le sujet : les constituants de la matière). Pour être plus précis, 90% de ces particules sont des protons, 1 % des électrons et le reste des morceaux d’atomes comme l’hélium, le bore, le lithium, etc. Précisons que ces particules subatomiques ne furent pas reconnues comme telles d’emblée. En effet, bien des scientifiques pensaient qu’il s’agissait non pas de particules mais de rayons lumineux (photons) et il faudra attendre 1930 pour éliminer cette hypothèse en démontrant que le flux de ces mystérieux éléments varie selon l’intensité du champ magnétique terrestre (auquel un photon est par définition insensible puisqu’il n’a pas de masse).

 

     Ce qui est remarquable, c’est la vitesse gigantesque de ces particules électrisées microscopiques et, par voie de conséquence, l’énergie fantastique qu’elles renferment et qui peut dépasser mille fois l’énergie maximale développée par l’accélérateur de particules du CERN, à Genève, celui-là même qui a récemment mis en évidence le boson de Higgs (voir le sujet). Le phénomène étant permanent et provenant de tous les coins du cosmos, il n’en fallait pas plus pour que les scientifiques se posent la question : quel peut donc être la nature du phénomène cosmique si puissant qui entraîne ce bombardement ?

 

 

Un phénomène mystérieux qui a fait avancer la physique fondamentale…

 

     Lorsque ces particules subatomiques bombardent notre planète, elles se heurtent forcément aux particules de l’atmosphère terrestre et le choc avec elles de ces protons « extraterrestres » voyageant à unerayons-cosmiques-gerbe.jpg vitesse proche de celle de la lumière entraîne des gerbes de particules secondaires. Exactement comme on cherche à le faire dans un accélérateur de particules afin de connaître les constituants intimes de la matière… sauf qu’on est alors plus de 20 ans avant la construction de ces machines ! C’est une aubaine formidable pour les scientifiques de l’époque qui ne s’y trompent pas. Bien sûr, on ne sait pas ce qui provoque ce phénomène mais en l’étudiant attentivement on va mettre en évidence nombre de particules élémentaires (positrons, muons, etc.) ce qui fera considérablement avancer la physique fondamentale… et le nombre des prix Nobel.

 

 

…mais dont on ne connaissait pas la source

 

     Trouver l’origine d’une source de lumière est en définitive assez simple. En effet, les photons voyagent en ligne droite et ils ne sont que peu perturbés par leur environnement. Tout au plus peuvent-ils être occultés par une autre source lumineuse, plus intense ou plus proche. A moins qu’ils ne soient réfléchis ou déviés par un obstacle facile à identifier. C’est tellement vrai que c’est grâce à eux que l’on a pu mettre en évidence la courbure de l’espace et ainsi démontrer de façon catégorique le bien fondé de la théorie de la relativité générale.

 

     Mais des particules subatomiques, électrisées de surcroit ? Le moindre champ magnétique les fait dévier or, des champs magnétiques divers, ce n’est pas ce qui manque dans et entre les galaxies. Du coup, le petit bombardement que nous subissons quotidiennement provient de partout… et de nulle part : impossible d’en connaître l’origine véritable.

 

     Dans les années 1935, les astronomes Walter Baade et Fritz Zwicky (celui qui, le premier, a par ailleurs émis l’idée de l’existence d’une matière zwicky-fred.jpgnoire) abordent la question selon l’approche théorique suivante : 1. ces particules sont incroyablement rapides et énergétiques ; 2. Il faut donc un phénomène d’une violence extrême pour les accélérer ainsi or 3. Quels sont les événements les plus violents de l’Univers ? L’explosion des supernovas ! Il faut dire que Zwicky était particulièrement concerné car il reste à ce jour le plus grand découvreur de supernovas (plus de 120), un terme d’ailleurs inventé par lui.

 

     Une supernova – nous l’avons déjà expliqué dans un sujet précédent – est le stade ultime de la vie d’une étoile géante (entre 8 et 30 masses solaires, voire plus). Ces monstres stellaires – dont la vie comparée à celle des autres étoiles est relativement courte – finissent tous de la même façon. On trouvera une explication plus complète de ces fins de vie apocalyptiques dans le sujet dédié (voir : novas et supernovas). Rappelons néanmoins succinctement de quoi il s’agit : le phénomène  le plus fréquent concerne des étoiles dont la taille est supérieure à huit masses solaires (il existe d’autres sources de supernovas à partir de naines blanches mais ne compliquons pas inutilement le sujet). Ces énormes étoiles commencent donc comme les autres à transformer l’hydrogène en hélium mais, du fait de leur masse gigantesque, les pressions en jeu leur permettent de Supernova-250.jpgpoursuivre la synthèse d’atomes plus massifs pour aboutir, en fin de cycle, à du fer dont les atomes très stables ne peuvent fusionner. Dès lors, cette masse finit par s’effondrer sur elle-même et aboutit à une sorte de magma de neutrons (d’où leur nom d’étoiles à neutrons). Les masses extérieures de l’étoile, quant à elles, rebondissent sur ce cœur d’acier et sont projetées dans l’espace sous la forme d’une enveloppe stellaire s’étendant à la vitesse de plusieurs milliers de km par seconde dans une débauche d’énergie qui fait briller l’étoile comme des milliards de soleils. Dans certains cas, cette luminosité est si intense qu’elle masque durant quelques temps la lumière de la galaxie où elle se trouve, pourtant composée de centaines de milliards d’étoiles…

 

     Il s’agit ici d’un des phénomènes les plus violents qui puisse se rencontrer dans l’Univers. Un phénomène qui projette dans l’entourage de l’étoile géante des radiations multiples dont on dit qu’elles seraient capables de détruire toute vie sur des dizaines d’années-lumière de distance. Heureusement, de tels cataclysmes sont en définitive assez rares : depuis que les hommes utilisent des instruments d’observation modernes, aucune supernova n’a été signalée dans la Voie lactée mais seulement dans d’autres galaxies.

 

     Baade et Zwicky en sont convaincus : ce sont ces explosions gigantesques qui créent les rayons cosmiques… mais butent sur un problème : comment expliquer l’incroyable accélération donnée à ces particules subatomiques qui, répétons-le, voyagent presque à la vitesse de la lumière ?

 

 

Une explication théorique est avancée

 

     Nous sommes en 1970, presque quarante ans après les intuitions de Baade et Zwicky. Les idées ont avancé, notamment en ce qui concerne l’étude des plasmas chauds astrophysiques et thermonucléaires d’origine naturelle (magnétohydrodynamique). Du coup, les équations n’excluent plus formellement les théories des deux astronomes. L’accélération immense des particules cosmiques pourrait se faire à la frontière de l’onde de choc créée par la supernova : en passant et repassant des milliers de fois cette onde de choc, les particules seraient chaque fois accélérées jusqu’à presque atteindre la vitesse de la lumière… L’idée est séduisante mais ce n’est qu’une hypothèse : comment faire pour visualiser de façon certaine le phénomène ?

 

     Or, on sait depuis les années 1960 une chose très importante : lorsqu’elles rencontrent des atomes interstellaires, certaines de ces molécules cosmiques émettent une lumière très vive sous la forme de photons de haute énergie appelés « rayons gamma ». Ce sont eux que lesrayons-gamma-550008.jpg télescopes vont chercher à capter mais ce n’est qu’en 2004 que la quête se révèle fructueuse grâce à un télescope situé en Namibie (expérience H.E.S.S, d'après le nom du découvreur des rayons cosmiques) : des rayons gamma sont identifiés et ils le sont au voisinage de supernovas. Confirmation quelques années plus tard, en février 2012, par le VLT du Chili qui s’était intéressé plus particulièrement à la supernova SN 1006… A défaut de preuves formelles, les éléments de suspicion s’accumulent…

 

 

Supernovas et superbulles

 

     L’endroit où se désintègre une supernova est appelé par les astronomes superbulle. De quoi s’agit-il ? Nous avons vu que la désintégration d’une supernova passait pas l’expulsion de son enveloppe externe et donc la propagation d’une onde de choc. Il se crée ainsi un espace qui peut s’étendre sur plusieurs dizaines d’années-lumière de large, espace dont les gaz qui y sont présents sont soumis à l’intense lumière ultraviolette de Superbubble_N70_in_LMC.jpgl’étoile agonisante et ainsi portés à des températures inimaginables. C’est dans cette superbulle que les particules cosmiques sont longtemps piégées (des milliers d’années) rebondissant encore et encore jusqu’à presque atteindre la vitesse de la lumière (c’est la raison pour laquelle on dit de ces particules qu’elles sont « relativistes ») avant de s’échapper enfin pour, mus par une vitesse et une énergie colossale pour leur taille, venir s’éclater à l’autre bout de l’Univers sur des particules « naturelles » comme, par exemple, celles de l’atmosphère terrestre.

 

     Ces fameux rayons gamma ne sont pas si faciles à mettre en évidence, en tout cas à partir d’un observatoire terrestre car ils sont presque tous arrêtés par les couches supérieures de l'atmosphère de notre planète. C’est pour cela que les scientifiques ont mis beaucoup d’espoirs dans des études « hors atmosphère terrestre ». Et leurs attentes ont été récompensées. Lancé en 2008, le laboratoire spatial américain Fermi, a ainsi pu mettre en évidence un excès significatif de rayons gamma dans un amas d’étoiles géantes d

Fermi-labo-spatial.jpg

e la constellation du Cygne, des étoiles situées à 4500 années-lumière de nous, précisément dans les superbulles qui les entourent et qui sont donc - on en a à présent la preuve - les lieux de naissance de ces mystérieux rayons cosmiques. Il aura fallu encore quatre ans supplémentaires d’étude des spectres de ces extraordinaires particules pour élucider ce mystère vieux de près de cent ans !

 

 

De la ténacité, encore et toujours

 

     Un peu à la façon de la découverte du boson de Higgs (dont les scientifiques ont prédit l’existence pendant des dizaines d’années avant de le mettre enfin en évidence il y a quelques mois), l’énigme des rayons cosmiques aura occupé les esprits durant des décennies. Ce qui est remarquable dans cette histoire à rebondissements, c’est que jamais les scientifiques ne se sont découragés. Si grâce à des esprits talentueux, une explication logique a été émise il y a plus de soixante-dix ans, il aura fallu attendre l’appui de la technique pour apporter des preuves définitives. Mais je suis certain d’une chose : Fritz Zwicky aurait été heureux de savoir que son hypothèse était la bonne mais, dans le cas contraire, il aurait tout aussi bien accepté d’être désavoué car, au-delà de son caractère particulièrement irascible, c’était avant tout un scientifique. Un vrai.

 

 

 

  

Sources :

 

1. http://sciencesetavenir.nouvelobs.com/espace/20111128.OBS5515/les-superbulles-sources-de-rayons-cosmiques.html

2. http://www.journaldelascience.fr/espace/articles/les-rayons-cosmiques-naissent-dans-les-superbulles-2427

3. Science & Vie, n° 1149, juin 2013

4. http://www.futura-sciences.com/magazines/matiere/infos/actu/d/physique-origine-rayons-cosmiques-fermi-confirme-piste-supernovae-44670/

 

 

 

Images :

 

1. les restes (rémanent) de la supernova de 1066 (sources : www.cidehom.com)

2. départ de Victor Heiss pour la haute atmosphère (sources : www.nytimes.com)

3. gerbe de rayons cosmiques (sources : www.lesia.obspm.fr)

4. l'astronome Fritz Zwicky (sources : soundcloud.com)

5. vue d'artiste d'une supernova (source : www.cafardcosmique.com)

6. rayons gamma (sources : www.linternaute.com)

7. superbulle HENIZE 70 (sources : fr.wikipedia.org)

8. le laboratoire spatial Fermi (sources : www.interactions.org)

 (pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

  

Mots-clés : Cordwainer Smith - ionisation - Charles Wilson - Victor Franz Hess - satellite Fermi - particules subatomiques - champ magnétique terrestre - accélérateur de particules - Walter Baade - Fritz Zwicky - supernova - étoile à neutrons - rayons gamma - superbulles

  (les mots en blanc renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

 

1. trous noirs

 

2. pulsars et quasars

 

3. les constituants de la matière

 

4. novas et supernovas

 

5. le boson de Higgs

 

6. sursauts gamma

 

 

  

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 4 août 2013

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article
8 mai 2013 3 08 /05 /mai /2013 19:33

 

 

 HD-140283l.jpg

 

 

 

 

 

 

     Les étoiles dites primordiales ont déjà fait l’objet d’un article (voir sujet : les étoiles primordiales) et si je souhaite en reparler aujourd’hui, c’est en raison de l’étude récente d’un astre baptisé par les astronomes HD 140283, étoile fort ancienne et d’ailleurs surnommée « étoile-Mathusalem ». Il s’agit d’un objet très observé ces dernières années et sur lequel nous possédons à présent plus de précisions. Au préalable, je rappellerai néanmoins brièvement ce que sont ces étoiles primordiales avant d’aborder ce qui fait l’intérêt de cet astre si âgé.

 

 

Les étoiles primordiales

 

     Au tout début, lorsque l’Univers était encore dans ses premiers instants, les toutes nouvelles galaxies étaient probablement plus petites et presque entièrement composées d’étoiles géantes bleues, c'est-à-dire etoiles-primordiales--vue-d-artiste-.jpgjeunes. Ces premières étoiles étaient en fait – c’est l’hypothèse la plus probable - des étoiles supergéantes, peut-être 100 à 150 fois la taille du Soleil. Qui dit étoiles supergéantes, dit également vie stellaire courte et, de fait, cette première génération n’a probablement vécu que quelques millions d’années (à comparer avec notre Soleil, une naine jaune, dont la longévité est de l’ordre de dix milliards d’années, voire avec la majorité des étoiles de nos galaxies, des naines rouges pouvant vivre des dizaines de milliards d’années). On comprend aisément que la première génération d’étoiles géantes a certainement disparu depuis longtemps.

 

    Comment le sait-on ? La réponse est aisée. Au début de l’Univers, juste après le Big bang, il n’y avait dans le cosmos que de l’hydrogène et de l’hélium. Toutefois, le temps passant, les premières géantes stellaires se sont mises à fabriquer des éléments plus lourds, par exemple l’oxygène, le carbone ou le fer et c’est en explosant lors de leur fin de vie (si courte) qu’elles ont ensemencé leur environnement, permettant aux générations suivantes d’utiliser ces métaux lourds. De coup, toute étoile  (comme le Soleil) possédant ces dits éléments ne peut être de la première génération : on peut même avancer que plus une étoile contient d’éléments lourds, plus elle est vraisemblablement d’une génération récente.

 

     Les télescopes actuels voient de plus en plus loin (donc de plus en plus dans le passé) et ont réussi à repérer des étoiles très très pauvres en éléments lourds et donc certainement très anciennes. Malheureusement, elles sont également très éloignées de notre système solaire et présentent donc un double désavantage : d’abord, vu leur éloignement, il est encore bien difficile aujourd’hui de les étudier convenablement et, d’autre part, située loin dans le passé, elles ne sont pas vraiment représentative de l’état actuel de notre Univers. C’est ici qu’entre en lice, notre vieille étoile HD 140283.

 

 

L’étoile HD 140283

 

    Précisons tout d’abord qu’il ne s’agit pas d’une découverte récente. Déjà, dans les années 1950, les astronomes s’étaient intéressés à elle en raison de sa faible métallicité (sa pauvreté en éléments lourds) mais surtout en raison d’une particularité : sa très grande rapidité de déplacement (ce fut une des premières découvertes d’étoiles « à grande vitesse ») car elle voyage à la vitesse record de 1,23 million de km/h. Observée dans larunaway-star_20074_600x450.jpg constellation de la Balance, il s’agit en fait d’une étoile vagabonde (ou étoile en fuite) qui, provenant du halo galactique (c'est-à-dire la partie extérieure de la Voie lactée où se trouvent les plus anciennes étoiles) se dirige vers le centre galactique et passe actuellement à notre proximité. Elle faisait probablement partie d’une galaxie naine « capturée » par la Voie lactée, il y a 12 milliards d’années. Grâce au télescope Hubble, une équipe américaine a pu mesurer son éloignement du Soleil : 190 années-lumière ce qui, en terme astronomique, est dérisoire. Elle possède une orbite très allongée qui la reconduira certainement dans son halo d’origine après passage dans le centre de la Galaxie. On a donc affaire à une visiteuse temporaire…

 

 

Les vieilles étoiles et l’âge de l’Univers

 

     Nous avons vu que les plus anciennes étoiles, celles qui sont « chronologiquement proches » des étoiles primordiales, se trouvent dans le halo, l’extérieur galactique, et plus encore dans les amas globulairesamas-globilaire-Messier-13.jpg situés à des milliers d’années-lumière de nous. Donc difficiles à étudier. Au point que dans les années 1960, on avait calculé qu’elles étaient plus anciennes que l’Univers lui-même ce qui est évidemment impossible ! Heureusement, en 1998, on a mis en évidence l’expansion accélérée de l’Univers (voir le sujet : l’expansion de l'Univers) ce qui rend ce dernier « moins jeune » que supposé. En 2013, les dernières données permettent d’estimer son âge à 13,8 milliards d’années… encore trop jeune pour HD 140283 dont l’âge estimé vers l’an 2000 était de… 16 milliards d’années. Il y avait certainement une erreur quelque part… On recommença donc les calculs pour notre vieille étoile ce qui n’est, comme on va le voir, pas si simple.

 

     Pour calculer l’âge d’une étoile, les astronomes recourent à deux paramètres principaux :

 

        1. la métallicité que nous avons déjà évoquée. L’idéal est alors une étoile en fin de vie, au moment où elle a presque épuisé sa réserve d’hydrogène. C’est en effet à ce stade que l’étoile va se transformer en géante rouge et qu’elle commence à augmenter sa luminosité ce qui la rend plus facile à détecter. On compare alors son abondance en éléments lourds par rapport à un modèle théorique d’évolution stellaire. Cela n’est toutefois pas suffisant car il faut également connaître

 

          2. l’éloignement de l’étoile. Dans le cas de HD 140283, on a dit qu’il s’agissait d’une étoile à déplacement rapide or les ondes lumineuses qui en proviennent sont, spectralement parlant, naturellement décalées. C’est iciparallaxe.jpg que le télescope Hubble rend un service inestimable en permettant une étude de ce que l’on appelle la parallaxe, c'est-à-dire la mesure de la position de l’étoile selon deux positions opposées de l’orbite terrestre autour du Soleil, mesures effectuées à six mois d’intervalle.

 

    Enfin, un dernier élément est à prendre en compte : nous savons depuis peu que l’hélium, plus lourd, a tendance à repousser l’hydrogène en périphérie d’un astre et, du coup, il est facile de surestimer sa quantité et donc l’âge de l’étoile…

 

     Tenant compte de tous ces éléments, l’âge de HD 140283 a été recalculé et ramené à… 14,46 milliards d’années. Toujours plus important que celui de l’Univers ? Eh bien non car l’incertitude du calcul étant de + ou – 800 millions d’années, l’âge de notre étoile devient cohérent avec celui de l’Univers.

 

 

La recherche des premières étoiles

 

     HD 140283 n’est pas la plus vieille étoile observée dans notre cosmos. J’avais signalé dans le sujet sur les étoiles primordiales la découverte par une équipe européenne d’un objet ne possédant pas du tout d’éléments lourds et donc formidablement âgé. Il s’agit d’une étoile naine repérée dans la constellation du Lion mais située à plus de 4000 années-lumière de nous ce qui rend son étude plus délicate. Mais est-elle vraiment une des toutes premières étoiles puisqu’on prétend que celles-ci ne peuvent être que des géantes à courtes durées de vie ?

 

     Par sa relative proximité, HD 140283 est bien sûr plus facile à étudier (tout est relatif). Décrite (à tort) comme la plus vieille étoile connue et puisqu’elle possède quelques traces d’éléments lourds, il s’agit là très certainement d’une étoile de seconde génération qui a pu être transitoirement contemporaine des vraies étoiles primordiales. Son observation participe à une compréhension de plus en plus aiguë des premiers instants de notre environnement. Il reste beaucoup à faire mais satellite-gaia3G.jpgles années à venir seront fertiles en nouvelles données. Je pense, par exemple, au lancement du satellite européen Gaïa qui a eu lieu avec succès le 19 décembre 2013 et qui devrait permettre d’affiner encore un peu plus notre connaissance de notre vieille étoile mais pas seulement puisqu’une de ses missions sera de faire la chasse aux étoiles de première génération. S’il en existe encore évidemment.

 

     Affirmons une fois de plus qu’il n’est pas vain de multiplier ce genre d’observations – même et surtout en temps de crise - car on dit à juste titre que connaître son passé, c’est pouvoir plus facilement interpréter son présent. Et peut-être aussi anticiper l’avenir.

 

 

 

Sources

1 Ciel et Espace, n° 516, mai 2013

2. Wikipedia.org

3. hubblesite.org

4. futura-sciences

 

 

Images

 1. HD 140283 (sources : flashespace.com)

2. étoiles primordiales (vue d'artiste) (sources : sciencesetavenir.nouvelobs.com)

3. une étoile vagabonde, 30 DOR 016 (sources : news.nationalgeographic.com)

4. amas globulaire Messier 13 (sources : ac-nice.fr)

5. calcul de parallaxe (sources : web.cala.asso.fr)

6. le satellite Gaïa (sources : flashespace.com)

 (Pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

Mots-clés : étoiles primordiales - géante bleue - naine jaune - naine rouge - métallicité - étoile vagabonde (ou runaway star/étoile en fuite) - amas globulaire - parallaxe - étoile de seconde génération - satellite Gaïa

 (les mots en blanc renvoient à des sites d'informations complémentaires)

 

 

Sujets apparentés sur le blog

 

1. mort d'une étoile

2. les premières galaxies

3. juste après le Big bang

4. les étoiles primordiales

5. l'expansion de l'Univers

6. amas globulaires et traînards bleus

7. étoiles doubles et système multiples (paragraphe sur les étoiles en fuite)

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 23 avril 2015

Partager cet article

Repost 0
Published by cepheides - dans astronomie
commenter cet article

Présentation

  • : Le blog de cepheides
  • Le blog de cepheides
  • : discussions sur la science (astronomie, paléontologie, médecine, éthologie, etc.) à partir d'articles personnels.
  • Contact

dépôt légal

copyrightfrance-logo17

Recherche

traduire le blog

drapeau-anglais.png
drapeau-allemand.png

.

.

.

 POUR REVENIR À LA PAGE D'ACCUEIL : CLIQUER SUR LE TITRE "LE BLOG DE CEPHEIDES" EN HAUT DE LA PAGE 

 

Visiteurs depuis la création du blog (2008) :

Visiteurs actuellement sur le blog :

 

 

Sommaire général du blog : cliquer ICI

 

du même auteur

"Camille" (roman)

cliquer ICI

 

"Viralité" (roman)

cliquer ICI

 

"petites tranches de vie médicale"

(souvenirs de médecine)

cliquer ICI

 

"la mort et autres voyages"

(recueil de nouvelles)

cliquer ICI

Catégories