Overblog Suivre ce blog
Administration Créer mon blog
4 août 2012 6 04 /08 /août /2012 17:05

 

 

 

 

 LHC-gene.jpg

     

 

 

     Depuis quelques semaines, la presse, généraliste et spécialisée, bruisse autour d’une étrange appellation : le boson de Higgs. Cette particule, découverte au CERN (Conseil Européen pour la Recherche Nucléaire) le 4 juillet dernier (avec 99,9% de certitude !) était le chaînon manquant du « modèle standard » expliquant la physique des particules : nous aurons l’occasion d’y revenir. Auparavant il convient de « tordre le cou » à une fausse dénomination. En effet, de temps à autre et certainement pour la recherche de sensations extrêmes, on trouve dans la presse la terminologie : « le boson de Higgs ou la particule de Dieu ». Il s’agit là d’un contresens et d’une stupidité. La réalité est la suivante : le prix Nobel de physique (1988), Léon Lederman, qui s’impatientait de ne pas pouvoir trouver cette particule insaisissable voulait l’appeler dans un livre « the Goddamn particle » ce qui veut dire la « satanée » ou la « fichue » particule. Son éditeur, de peur que le titre soit considéré comme grossier ou injurieux, décida de supprimer la deuxième syllabe (damn) de l’adjectif qui devint dès lors… God. D’où l’erreur colportée ensuite par un ensemble d’ignorants. Non, le boson de Higgs n’est pas la particule de Dieu mais c’est quoi, au juste ?

 

 

Les constituants de la matière

 

     Tout d’abord un peu d’histoire (récente) : c’est à Becquerel en 1896 que l’on doit la découverte de la radioactivité naturelle à partir de sels d’uranium. Deux ans plus tard, Pierre et Marie Curie identifient un nouvel élément radioactif, le radium, mais c’est à Rutherford que revient le mérite de démontrer que ces atomes radioactifs émettent des rayonnements dont on sut ensuite que les béta correspondaient à des électrons et les alpha à des noyaux d’hélium. C’est donc à partir de ce moment que l’on sut de façon définitive qu’il y avait effectivement plus petit que l’atome des Grecs anciens.

 

     Reprenons autrement. Dans le monde de l’infiniment petit, on a longtemps pensé que les atomes (qui, en s’assemblant, forment des atome-structure-2.jpgmolécules) étaient la plus petite partie possible de la matière. En fait les atomes sont composés d’un noyau plus ou moins gros (façon de parler) dans la proximité duquel interagissent avec lui des électrons (de charge négative), l’ensemble formant théoriquement un ensemble stable. Allons encore plus avant : le noyau d’un atome est formé de protons (charge positive) et de neutrons (neutres). Si l’électron est insécable, ce n’est pas le cas des neutrons et des protons qu’on peut dissocier en particules encore plus petites, les quarks (voir le sujet : les constituants de la matière).

 

    Dans la physique subatomique ou physique quantique, on s’intéresse avant tout aux interactions entre ces différentes particules dites élémentaires.  On cherche évidemment à savoir quelles sont les particules en jeu mais également comment elles se lient les unes aux autres car qui dit liaison (ou attraction) dit matière et donc d’autres particules comme agents de liaison ; en effet, dans le monde de la physique, il n’y a aucune place pour l’immatériel : tout est matière et rien que matière… On subdivise donc toutes ces particules en deux groupes : les fermions et les bosons. Les fermions sont nos particules élémentaires comme les quarks ou les électrons (et donc la matière proprement dite). Mais pour que ces particules puissent interagir ou se lier les unes aux autres, il est indispensable d’introduire des particules de liaison, particules qu’on appelle des bosons. Du coup, à chaque fermion doit correspondre un boson qui lui est propre et qui lui permet de réagir avec les autres fermions.

 

 

Quatre forces dans l’Univers

 

     Quatre forces principales assurent l’équilibre de l’Univers et les rapports entre ses différents constituants :

 

* le magnétisme et l’électricité qui donnent l’électromagnétisme,

 

* l’interaction faible qui permet la désintégration radioactive,

 

* l’interaction forte qui permet la cohésion entre les quarks et donc la solidité des noyaux des atomes et

 

* l’interaction gravitationnelle qui explique la chute des corps et leurs interactions (la marche des planètes ou… la pomme de Newton, par exemple). J’ai déjà eu à maintes reprises l’occasion de préciser qu’il n’était pas encore possible de faire coïncider la relativité générale qui explique la gravitation et donc l’Univers visible avec la mécanique quantique qui s’intéresse aux trois autres forces, celles de l’infiniment petit.

 

     Intéressons-nous uniquement aujourd’hui à ces trois forces-là que les scientifiques ont regroupées dans ce que l’on appelle le modèle standard.

 

     Dans les années 60, les physiciens sont arrivés à unifier deux de ces trois forces : l’électromagnétisme et l’interaction faible (d’où d’ailleurs l’appellation de théorie électrofaible) mais quelles en sont les particules intervenantes ? Pour la force électromagnétique, aucun problème : ce sont les photons (les particules de lumière) dont on sait qu’ils n’ont pas de masse. En revanche, pour l’interaction faible (la désintégration atomique), les bosons en cause (vous vous rappelez : les particules de liaison), appelés ici W et Z, doivent être terriblement massifs (ce sont les équations qui le disent)… ce qui n’est pas compatible avec la théorie électrofaible ! Gros problème. Du coup, il y a une cinquantaine d’années, Peter Higgs (et deuxhiggs-peter.jpg scientifiques belges, Robert Brou et François Englert) avancent une hypothèse : et s’il existait un autre boson qui donnerait leur masse aux bosons W et Z ? Une autre particule de type boson qui, par sa présence, expliquerait la masse importante (et contraire à la théorie) des bosons W et Z de l’interaction faible ? C’est bien cela que veulent dire les vulgarisateurs scientifiques en avançant que cette nouvelle particule de liaison dite boson de Higgs donne « de la masse » aux autres particules.

 

     Oui, mais tout cela restait de la théorie… jusqu’à ce que l’on mette effectivement en évidence ce fameux boson de Higgs. Une recherche qui dura 50 ans.

 

 

Le boson de Higgs

 

     L’hypothèse avancée par Higgs (et les autres) est la suivante : immédiatement après le Big bang (voir le sujet : Big bang et origine de l'Univers), les particules n’avaient pas de masse. Mais l’Univers s’est rapidement refroidi et, à partir d’une certaine température, s’est créé un champ de force invisible dit « champ de Higgs » auquel est associé un boson spécifique (une boson-de-higgs-simulation.jpgparticule de liaison) le boson de Higgs. Ce boson est universel, c'est-à-dire partout présent, et plus une particule interagit avec lui, plus elle a de masse. A l’inverse, des particules comme les photons ou les neutrinos (voir glossaire) qui n’ont pas de contact avec lui n’ont pas de masse. On retrouve ainsi une théorie cohérente et les équations redeviennent logiques. Il restait donc à le trouver, ce boson de Higgs, et ce d’autant que l’on ne connaissait pas sa masse à lui…

 

     Pour le mettre en évidence, il fallait construire une énorme structure, un accélérateur de particules dont le plus récent (et le plus puissant) est celui du CERN à la frontière franco-suisse. Cette machine, le LHC (Large Hadron Collider), entra en service en 2008, approximativement au moment où les Américains abandonnèrent leur propre projet (ce qui explique la diversité des personnels scientifiques autour du LHC). Quel en est lelhc-sim.jpeg principe ? Il s’agit d’accélérer des faisceaux de protons tournant en sens contraire dans un étroit tunnel circulaire souterrain de 26,5 km de long. Lors de leur collision, ces protons dégagent une énergie de 7 000 GeV, c'est-à-dire une énergie correspondant au tout premier temps du Big bang. Que l’on se rassure toutefois, l’affaire – microscopique – ne dure que quelques millionièmes de seconde ! C’est justement ce délai très court qui est le problème : le boson de Higgs notamment est plutôt difficile à mettre en évidence en raison de sa durée de vie très brève

 

     Après quelques ennuis de départ, le LHC démarra réellement début 2011 et, avant même qu’il ait atteint l’ensemble de ses possibilités, le 4 juillet 2012, après avoir colligé les millions de traces laissées par lalhc2.jpg création et la destruction des particules observées, les scientifiques ont pu conclure « à la très grande probabilité » (99,9%) de la découverte du boson de Higgs : vers la fin 2012, nous en aurons la confirmation définitive.

 

 

Quel est l’intérêt de cette découverte ?

 

     De mauvais esprits nous disent qu’avoir mis 7 milliards d’euros dans ce projet du CERN était insensé, l’argent ayant pu être mieux utilisé ailleurs (où ?). Je suis totalement en désaccord avec ces esprits rétrogrades. Pour peu que la découverte du boson de Higgs soit confirmée, ce sera important dans la validation du modèle standard des particules et, par voie de conséquence, dans notre compréhension de l’Univers qui nous entoure et de la matière qui le compose. Ce sera un pas important mais un pas seulement car il reste encore bien des données qui nous restent inconnues, au premier rang desquelles cette unification tant attendue entre physique quantique et relativité générale.

 

     Je rappelle également à ces détracteurs qu’il est impossible de savoir par avance à quoi nous conduit une théorisation en science fondamentale. La mécanique quantique, si difficile à comprendre, (voir le sujet : mécanique quantique) fut terriblement décriée à ses débuts au point que ses concepteurs passaient pour des incapables ou des farfelus. Pourtant, sans elle, pas de laser, ni de transistors ou encore d’énergie nucléaire…

 

     Avoir pu mettre un terme à une quête théorique de plusieurs dizaines d’années est un exploit et, d’une certaine façon, un moyen de reprendre espoir en la capacité de nos sociétés si malmenées ces temps-ci.

 

 

 

Sources

. Wikipedia France (http://fr.wikipedia.org)

. http://1jour1actu.com

. http://www.agoravox.fr

. http://www.lalsace.fr

. http://public.web.cern.ch

 

Glossaire

* Neutrino : on s’est rapidement aperçu que, en physique nucléaire,  la désintégration béta des atomes ne semble pas respecter les lois immuables de la conservation d’énergie. Du coup, en 1933, le physicien Wolfgang Pauli propose l’existence d’une particule spéciale de charge électrique nulle qu’il appelle neutrino et qu’il intègre dans sa théorie de l’interaction faible. Le premier neutrino (il en existe trois sortes) est découvert en 1956 par Reines et Cowan (les deux autres en 1962 et 2000).

 

Images

 

1. l'accélérateur de particules du CERN (sources : www2.cnrs.fr)

 2. structure de l'atome (sources : astro-canada.ca)

 3. Peter Higgs (sources : http://72.29.68.249)

4. simulation de la formation d'un boson (sources : CMS in www.lefigaro.fr/) 

5. visualisation du circuit du LHC (sources : grindaizer.blogspot.com)

6. le LHD du CERN (sources : admiroutes.asso.fr)

(pour lire les légendes, passer le pointeur de la souris sur les images)

  

 

Mots-clés : CERN - Léon Lederman - radio-activité naturelle - électron - proton - neutron - quark - électromagnétisme - interaction faible - interaction forte - gravité universelle - relativité générale - mécanique quantique - Peter Higgs - LHC

 (les mots en blanc revoient à des sites d'informations complémentaires)

 

 

Sujets apparentés sur le blog

1. théorie de la relativité générale

2. mécanique quantique

3. les constituants de la matière

4. Big Bang et origine de l'Univers

5. juste après le Big bang

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

 

l'actualité du blog se trouve sur FACEBOOK

 

 

 Mise à jour : 15 juillet 2013

 

Partager cet article

Repost 0
Published by cepheides - dans physique
commenter cet article
11 janvier 2009 7 11 /01 /janvier /2009 18:27

 

 

 

 

 

  

 

     Depuis toujours les hommes se sont demandés de quoi pouvait bien être fait le monde dans lequel ils vivent et, accessoirement, de quoi se composait leur propre corps. A l’échelle macroscopique, nous avons depuis quelques siècles une idée assez précise de cette organisation mais au-delà de ce que l’on peut voir, dans l’infiniment petit, la réponse est moins claire. On évoque alors les atomes mais connait-on vraiment leurs structures et les forces qui les lient ou les font interagir ? De quoi sont-ils faits eux aussi ? Quelle est la limite de l’insécable ? La physique moderne, si elle ne peut évidemment tout expliquer, dispose de quelques pistes… Retour sur le problème.

 
     Intuitivement, certains penseurs anciens (les philosophes grecs présocratiques comme Leucippe ou Démocrite notamment) avaient soupçonné que la matière était composée de parcelles indivisibles. C’est une notion qu’on comprend empiriquement en émiettant, par exemple, une motte de terre, obtenant des parties de plus en plus petites, et si l’on pouvait continuer, des grains finalement indivisibles et permettant la conservation de cette matière, les atomes. De l’ancien concept philosophique de l’antiquité, on est passé à un concept qui demeure théorique (car non visible) mais qui est bien accepté par tous. Peut-on aller plus loin ?

 

 

 


Les particules élémentaires

 

  
     Avant de chercher à comprendre ce qui lie les particules les plus petites de la matière encore faut-il les décrire. Pour cela, le plus simple est de partir de cet atome que nous venons d’évoquer parce que c’est lui qui caractérise les éléments (le fer, le cuivre, le cobalt, etc.). De quoi est-il fait puisqu’il n’est plus comme le pensaient les philosophes grecs le « dernier grain indivisible ».

 
     En réalité, un atome est composé d’un noyau et d’électrons qui gravitent autour de lui (voir le sujet mécanique quantique). Le noyau atomique est lui-même formé de structures plus petites, les protons et les neutrons. Comme leur appellation l’indique, les neutrons sont neutres tandis que les protons sont chargés positivement et les électrons négativement. C’est cet équilibre et le nombre des constituants qui caractérisent un atome (de fer, de plomb, etc.). Toutefois, si l’électron est bien une particule élémentaire (c'est-à-dire indivisible) comme l’est également le photon qui transporte l’information lumineuse, ce n’est pas le cas des protons et des neutrons qui peuvent être scindés en particules encore plus petites : les quarks.

 
     On sait à présent qu’il existe des quarks de différente nature (six pour être précis et possédant des noms assez exotiques : down, up, strange, charm, bottom ou beauty et top ou truth). On leur donne également, à ces quarks, des noms de couleur (en fait un moyen de les caractériser car cela n’a rien à voir avec les couleurs que nous connaissons). Tout cela est très compliqué et a d’ailleurs valu à Murray Gell-Mann le prix Nobel de physique en 1969 pour les avoir le premier décrits. Ce qu’il faut comprendre, c’est qu’il s’agit là des composants intimes de la matière et qu’ils interagissent les uns avec les autres et… mais à propos, comment pourraient-ils interagir puisqu’ils ne se « touchent » évidemment pas ? Quelles sont les " forces " qui les lient ? D’autres particules élémentaires qui ne serviraient qu’à ça ? C’est tout l’objet du modèle standard actuellement en vigueur en physique fondamentale : nous aurons l’occasion d’y revenir mais, auparavant, il faut justement préciser quelles sont les « forces » présentes dans l’univers.

 

 

 


Les différentes forces de l’univers

 

   
     On pense que ces forces universelles – qu’on appelle forces fondamentales – étaient de même puissance au moment du Big Bang puis qu’elles ont divergé. Elles sont au nombre de quatre :

 
               • L’interaction électromagnétique qui est responsable de la plupart des phénomènes que nous pouvons observer à notre échelle (lumière, magnétisme, réactions chimiques, électricité, etc.). Elle peut être attractive ou répulsive selon les charges électriques (pensez à deux aimants que l’on rapproche l’un de l’autre) et elle est transportée par les photons.

 
         • L’interaction nucléaire forte : c’est la force qui est responsable de la cohésion des quarks entre eux (et c’est accessoirement la force d’interaction la plus puissante connue). Elle permet ainsi la cohésion des noyaux des atomes, si difficiles à briser, mais ne s’exerce que sur une distance infime, subatomique. Elle est transportée par une particule appelée gluon sur laquelle nous reviendrons plus tard.

 
         • L’interaction nucléaire faible : c’est la force qui est responsable de la radioactivité β. Beaucoup moins puissante que l’interaction forte que l’on vient d’évoquer, elle possède, elle aussi, un rayon d’action très court. Ses transporteurs sont les bosons sur lesquels nous reviendrons aussi.

 
            • Et la gravitation : c’est la force qui lie les objets massifs entre eux et, donc, par exemple, les planètes, les étoiles ou les galaxies.  Nous avons déjà eu l’occasion d’en parler longuement dans un sujet précédent (voir sujet relativité générale).


     Or ce qu’aiment par-dessus tout les scientifiques, ce sont les choses simples. Ils pensent en effet que lorsqu’on a recours à des théories compliquées, faisant appel à un grand nombre de paramètres indispensables, c’est qu’on ne sait pas vraiment résoudre le problème. Toute la démarche des physiciens au cours de ces dernières décennies aura donc consisté à décrire, expliquer et essayer d’unifier ces différentes forces afin d’obtenir un modèle simple et cohérent. Pour cela, ils disposent de deux grands outils : la physique macroscopique de la relativité générale et la physique quantique.

 

 

 


Les deux physiques

 


     La relativité générale, on l’a déjà dit, s’occupe de l’espace-temps macroscopique et donc explique ce que sont les caractéristiques de la force qui s’exerce à cette échelle, la gravitation. Pour résumer brièvement, disons que la relativité générale explique la gravitation comme une fusion de l’espace et du temps. Pour mieux faire comprendre cette fusion, on prend souvent l’exemple d’un tapis mousse sur lequel un objet lourd imprime une empreinte d’autant plus grande que l’objet est pesant. Un objet plus petit situé à proximité de lui ne peut alors que suivre la courbure de la cuvette ainsi formée (on parle de géodésique). La lumière elle-même (ou plutôt les photons qui la transportent) suit la courbure ainsi créée.


       La physique quantique, elle, et nous en avons déjà parlé (voir sujet mécanique quantique), s’intéresse à l’univers subatomique et donc aux trois forces restantes déjà citées, électromagnétisme et interactions forte et faible. Elle se propose de décrire les particules élémentaires intervenant à cette échelle et ce qui les fait interagir. Elle divise ces particules en deux groupes : les fermions et les bosons. Les fermions sont les particules élémentaires que nous avons déjà évoquées et qui constituent la matière proprement dite, par exemple les quarks ou les électrons. La mécanique quantique introduit un deuxième groupe de particules qui, cette fois, sont des particules de liaison entre les fermions et elle les appelle des bosons. A chaque particule élémentaire du groupe fermions doit donc correspondre une particule de liaison spécifique du groupe bosons. Les scientifiques n’ont évidemment pas encore tout découvert : la preuve en est qu’il existe des fermions auxquels ne correspondent aucun boson et des bosons qui n’ont pas de correspondants chez les fermions. Compliqué ? Pas tant qu’il y paraît.

 
     Prenons un exemple, celui d’un quark isolé. Une telle particule élémentaire isolée n’a pas de masse et n’interagit avec rien. Dans l’univers, il existerait un bain constant de bosons et dès qu’une particule pénètre un champ de bosons, ces derniers s’agglutineraient autour d’elle en lui conférant dès lors une masse et la possibilité d’interagir avec d’autres fermions : ces bosons intervenants sont appelés « bosons de Higgs », du nom du scientifique qui le premier postula leur existence (il existe d’autres bosons pour des fermions spécifiques mais le boson universel est le boson de Higgs). Pour le mettre en évidence on a construit des outils spécifiques qui sont ici des accélérateurs de particules. L’idée est « d’accélérer » les particules à une vitesse incroyable avec l’espoir de faire éclater les liaisons fermions-bosons, libérant ainsi ce fameux boson de Higgs : c’est cela l’intérêt considérable du LHC (du CERN à Genève), fleuron de la recherche fondamentale européenne. Et cela a marché ! En juillet 2012, ce fameux boson de Higgs a pu être mis en évidence au CERN (avec 99,9% de certitude), mettant par là-même un terme à une recherche de près de cinquante ans... On trouvera un article spécialement consacré à cette remarquable découverte dans ce blog (voir le sujet : le boson de Higgs).

 
     En faisant correspondre équations et observations, les physiciens ont donc pu construire une théorie générale pour unifier tout cela : le modèle standard.

 

 

 


Le modèle standard

 


     C’est la première approche – actuelle - d’une théorie permettant d’unifier toutes les forces présentes dans l’univers que ce soit à l’échelle macroscopique (relativité générale) ou microscopique (physique quantique). Dans ce modèle, un certain nombre de forces ont été unifiées :

 
              • magnétisme et électricité donnent l’électromagnétisme ; ici, pas de problème : les fermions sont agglutinés par les photons qui n’ont pas de masse ;

 
       • l’interaction faible et électromagnétisme donnent l’électrofaible ; cette force électrofaible concerne les bosons W et Z qui ont une masse (cela est expérimentalement prouvé) : il faut donc leur faire correspondre un boson sans masse, le boson de Higgs qui, en s’agglutinant à eux leur conférerait cette masse.

 
               • l’interaction forte (gérée par des bosons particuliers, les gluons) associée à la force électrofaible donne le modèle standard.


     Alors, tout est parfait ? Eh bien non parce qu’il reste une force que l’on n’arrive pas à unifier avec les autres : la gravitation. On n’a pas encore trouvé dans le domaine quantique les éléments pouvant correspondre à la gravitation pourtant expliquée avec un succès jamais  démenti par la théorie de la relativité générale. Si l’on y arrivait, on obtiendrait ce que certains appellent la théorie du tout mais il y a un problème : le boson responsable de la gravitation manque toujours à l’appel. On l’appelle le graviton mais son existence est toute théorique et il n’a jamais été mis en évidence nulle part. Voilà donc encore beaucoup de travail en perspective… Ajoutons à cela que la plus grande partie de la matière échappe à notre compréhension (voir sujet matière noire et énergie sombre). Il n’empêche, les connaissances scientifiques sur la matière ont quand même bien progressé ces dernières années…


     Nous ne connaissons pas encore toutes les caractéristiques et toutes les formes que prend la matière qui compose notre univers. Toutefois, on peut aujourd’hui penser que tout est matière et que ce qui ne semble pas l’être (?) vient du fait que ses constituants n’ont pas encore été clairement identifiés. De nos pensées intimes aux plus grandes des galaxies, tout est supporté par des particules, en quantité et en formes évidemment variables, mais relevant toutes de la matière. Je me doute que cette affirmation peut en effrayer certains mais qu’ils se rassurent car, au bout du compte, ce qui importe véritablement, ce n’est pas la nature des choses mais l’usage qu’on en fait.

 

 



Images

 
     1. Stonehenge (sources : www.marxer.org)

      2. quark (sources : www.pentek.com)

    3. galaxies émergentes grâce aux forces de la gravitation (sources : pagesperso-orange.fr/ainvo)

     4. le LHC du CERN à Genève (sources : blog.nanovic.com.au)

     5. simulation de la désintégration d'un boson de Higgs dans un accélérateur de particules (sources : www.in2p3.fr)

(Pour lire les légendes des illustrations, passer le pointeur de la souris dessus)




Mots-clés : atome, proton, neutron, électron, quark, fermion, boson, Higgs, boson de Higgs, physique quantique, relativité générale, gravitation, électromagnétisme, interaction faible, interaction forte, modèle standard, théorie du tout

 (les mots en blanc renvoient à des sites d'informations complémentaires)

 

 

 

 Sujets apparentés sur le blog :

 

1.  mécanique quantique

2. théorie de la relativité générale

3. matière noire et énergie sombre

4. le boson de Higgs

5. la théorie des cordes ou l'Univers repensé

6. l'expansion de l'Univers

7. Big bang et origine de l'Univers

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

 

Mise à jour : 24 mars 2013

Partager cet article

Repost 0
Published by cepheides - dans physique
commenter cet article
22 février 2008 5 22 /02 /février /2008 16:08
congr-s-de-Solvay--1927-.jpg

la conférence de Solvay (1927)
Une des plus légendaires photos de l'histoire de la physique montrant les participants à la cinquième conférence de Solvay, en octobre 1927, à Bruxelles. Vingt-neuf physiciens, parmi les principaux théoriciens des quanta de l'époque, s'y réunirent pour discuter du sujet : " électrons et photons ". Dix-sept de ces vingt-neuf participants devinrent des prix Nobel.
(au fond, de g. à dr. : A.Piccard, E. Henriot, P. Ehrenfest, É. Herzen, T. de Donder, E. Schrödinger, J-E Verschaffelt, W. Pauli, W. Heisenberg, R H Fowler, L. Brillouin
au milieu : P. Debye, M. Knudsen, W L Bragg, H. Kramers, P. Dirac, A. Compton, L. de Broglie, M. Born, N. Bohr
au premier rang : I. Langmuir, M. Planck, M. Curie, H. Lorentz, A. Einstein, P. Langevin, C. E. Guye, C. T. R Wilson, O W Richardson)
 
La naissance de la mécanique quantique sous nos yeux.
(sources : amp2005.blog.lemonde.fr/category/webtech/)

 

 

 

 

 
     Je me souviens d'un temps ancien où, en classe de cinquième, devant un professeur de mathématiques qui m'encourageait du regard et face à des camarades plus ou moins attentifs, on m'avait confié la lourde tâche de lire – et de commenter – mon livre de chevet de l'époque, «l'astronomie à bâtons rompus» (de l'auteur allemand O.W. Gail, éditions Fernand Nathan, 1954). C'était un petit recueil que j'avais lu et relu jusqu'à en faire pâlir l'encre d'imprimerie et corner les pages. Les explications y étaient simples, certainement même simplistes, mais accessibles à nos cerveaux d'alors. On y décrivait entre autre l'atome comme un espèce de petit système solaire, le noyau représentant le Soleil et les électrons les planètes gravitant autour de lui. J'ai longtemps conservé cette image, fausse évidemment, et il m'aura fallu bien des efforts pour comprendre que, non, la réalité n'était certainement pas celle-là. Il me paraît utile aujourd'hui, à la suite de mon article sur la théorie de la Relativité générale (voir sujet théorie de la relativité générale), de revenir sur ces notions de base qui ne s'expliquent finalement assez bien qu'à l'aide de la mécanique quantique.

 
 

 

 
pourquoi la mécanique quantique ?

 

 

     Il faut d'emblée souligner que le terme de « mécanique quantique » est particulièrement mal choisi : le mot « mécanique » traduit en effet les mouvements dont sont animés des corps dans l'espace or la mécanique quantique ne décrit nullement ce type de mouvements mais s'intéresse essentiellement à la description du système dont ces corps relèvent. La deuxième partie du terme est également impropre puisque qu'elle ne fait allusion qu'à des phénomènes corpusculaires (les quanta) alors que la dimension ondulatoire est également présente ici (c'est d'ailleurs pour cela que cette discipline a été un temps appelée « mécanique ondulatoire », terme tout aussi mal adapté). « Ce qui se conçoit bien s'énonce clairement et les mots pour le dire arrivent aisément », affirmait Boileau dans son « art poétique ». J'imagine que ce n'est pas par hasard que la confusion des mots règne d'emblée dans la théorie : la mécanique quantique (il faut bien continuer à l'appeler ainsi) est difficile à appréhender car ses concepts échappent facilement à la logique courante...

  
     Précisons tout d'abord les circonstances qui ont conduit à l'édification de la théorie. Nous sommes alors au début du XXème siècle et la science est triomphante et notamment, depuis Newton, la physique. Pourtant il existe des coins d'ombre et cela concerne la lumière :

 
          * selon la théorie de Maxwell, la lumière a une
énergie infinie dans le spectre ultra-violet. Comment se fait-il alors que nous ne soyons pas immédiatement grillés par la proximité d'une flamme ou du Soleil ?

 
          *
l'émission de la lumière par un gaz (par exemple un tube au néon) montre que, à des fréquences bien précises, il existe des raies, un phénomène qui n'a jamais pu être expliqué.

 
          * sur la surface d'un objet métallique,
la lumière, on le sait, éjecte des électrons quelle que soit son intensité ce qui ne cadre pas avec la physique traditionnelle.

 
     Ces trois phénomènes inexpliqués vont conduire les scientifiques de l'époque à reconsidérer ce que l'on croyait acquis. La première anomalie (l'énergie infinie de la fréquence ultraviolette) aboutira à la remise en cause de ce principe par
Max Planck en 1900 : pour lui, la lumière ne peut être que discontinue et émise par paquets, les quanta. Quelques années plus tard, l'électromagnétisme de la lumière sur le métal amène également Einstein à penser que cette dernière est composée de particules. Enfin, en 1913, partant du phénomène des raies (lumière d'un gaz), Niels Bohr publie un nouveau modèle de structure atomique. C'est à partir de ces remises en cause que surgira, une dizaine d'années, plus tard la mécanique quantique.

 
     La théorie quantique s'appuie sur des calculs mathématiques bien précis (je serais, bien sûr, incapable de les résumer ici) et elle conduit à considérer de manière tout à fait nouvelle (et différente) la structure du monde microscopique, celui de l'atome. Elle décrit de manière parfaite la dynamique d'une particule massive ce qui permet d'induire un grand nombre d'applications pratiques (nous y reviendrons). Il existe toutefois un point d'achoppement majeur :
la théorie n'est pas relativiste, c'est à dire qu'elle ne prend pas en compte les données de la Relativité restreinte que nous avons précédemment évoquée. Il existe en conséquence un problème certain d'unification avec la physique du monde visible ce qui fait désordre...
 

 

 
que nous apprend la mécanique quantique ?

 

 
     Elle nous a permis de mieux saisir la configuration de l'atome. Un peu plus haut, j'expliquais que la vision d'un atome avec ses électrons tournant autour de lui comme un système solaire en miniature était fausse : comment peut-on alors se la représenter ? Eh bien sous la forme d'une sorte d'un petit nuage déformable particulièrement léger. Les électrons se trouvent généralement dans l'atome (« le nuage électronique ») et batifolent autour du noyau qui ressemble à une petite bille. Les électrons peuvent s'interpénétrer mais jamais se superposer : c'est ce que l'on appelle le principe d'exclusion. Imaginons à présent que ce petit nuage se coupe en deux : chacune des parties va dans un sens et s'éloigne de l'autre mais c'est pourtant toujours la même particule. En effet, si l'on agit sur l'une des parties, l'autre réagit immédiatement. Cette particularité est appelée la non-localité. Habituellement, les électrons restent confinés autour du noyau atomique, en adoptant des formes plus ou moins variables. Toutefois, dans le cas où ils s'en éloignent suffisamment, on s'aperçoit alors qu'ils se comportent comme des ondes en générant des interférences...

 

     Revenons sur le cas plus particulier de la lumière. Celle-ci est composée de particules, les photons, qui se comportent exactement de la même manière : les  groupes de photons peuvent produire des interférences, comme des ondes, tout en étant des particules... Ces étonnantes propriétés permettent de comprendre pourquoi une même particule peut être à deux endroits à la fois, sans que l'on sache où, ou bien nulle part ! Difficile à comprendre ? Prenons un exemple : un jeune garçon joue au ballon contre un mur. Il a deux possibilités : soit il frappe normalement et son ballon rebondit sur le mur pour revenir vers lui, soit il tape trop fort et la balle s'élève au dessus du mur et s'échappe. Dans le monde quantique, le « ballon », c'est à dire l'atome, est en fait un petit nuage déformable. De ce fait, s'il « rebondit » sur un obstacle – le haut du mur – une partie de lui peut sauter l'obstacle tandis que l'autre partie va rester du côté du jeune garçon. Mais il ne s'agit pas d'une scission en deux nouveaux objets distincts : c'est toujours la même particule et si on « touche » la partie au delà de l'obstacle, celle restée en arrière réagit instantanément.

 

     On peut donc résumer ces notions de la manière suivante : à l'échelon atomique, les particules qui composent la matière sont déformables et sont donc capables de réagir comme des ondes tout en restant unifiées ce qui explique pourquoi une action sur une partie entraîne une réaction instantanée sur l'autre partie. Les électrons ne sont donc pas de petits points « tournant » autour du noyau de l'atome et l'émission de la lumière n'est pas la conséquence de leur changement d'orbites comme on l'a longtemps cru : le phénomène est dû à un changement de forme de l'électron lui-même. Bien. Et ensuite ? Imaginons à présent que l'on veuille observer un électron. On va évidemment se servir d'un instrument mais, aussi miniaturisé qu'il puisse être, l'instrument en question sera composé de milliards de particules qui vont interagir avec l'électron observé. C'est la raison pour laquelle les physiciens quantiques expliquent que le simple fait « d'observer » perturbe le résultat (c'est ce que l'on appelle du mot savant de « décohérence »)... De ce fait, il est impossible de savoir exactement quelle est la forme adoptée par l'électron et on ne pourra que la deviner... et donc deviner où il sera exactement, d'autant que, comme on l'a déjà dit, il peut être « scindé » en deux (ou plusieurs parties) qui interagissent entre elles : il est ici... et là-bas et on parle alors d'état superposé (voir note en fin de sujet sur le chat de Schrödinger). Les moyens (et les calculs) pour savoir où se trouve tel ou tel électron seront donc forcément probabilistes.

 
     Comme on l'aura compris, cette physique très particulière a longtemps défié notre propre logique : comment peut-on admettre qu'un objet, si petit soit-il comme un électron, puisse être à deux endroits à la fois ? Bien des réticences ont été formulées et pas seulement par des gens peu informés. Pourtant, en partant des équations, on est arrivé à des résultats pratiques qui n'auraient pas pu être obtenus autrement. On peut dire que la mécanique quantique a bouleversé notre connaissance de la matière et qu'elle a permis de mettre au point des applications que nous utilisons quotidiennement.

 

 

utilité de la mécanique quantique

 

 

      Le monde dans lequel nous vivons ne serait pas du tout le même si de puissants esprits n'avaient pas théorisé la mécanique quantique. De nombreuses applications ont vu le jour grâce à elle et, à n'en pas douter, d'autres suivront. Citons-en quelques unes :

 

* la prédiction du comportement de la matière à l'échelon atomique a autorisé le contrôle de l'électron ce qui a conduit à la réalisation des transistors et, d'une manière générale, à la miniaturisation de bien des composants de nos appareils électroniques, comme le PC qui vous permet de lire ce blog...

 

le contrôle de la lumière a été réalisé de la même manière : c'est ainsi que les ingénieurs ont pu concevoir le faisceau laser de nos lecteurs de DVD ;

 

citons aussi la supraconduction qui, entre autre, a permis la réalisation de l'imagerie médicale par résonnance magnétique nucléaire ou IRM

 

* et l'énergie nucléaire dont les centrales fournissent une électricité qui permet de limiter l'émission de CO2 et donc l'effet de serre ;

 

*  la compréhension de la structure des cristaux et de leurs vibrations ;

 

la conduction thermique et la conductivité électrique des métaux ;

 

l'explication de l'effet tunnel (voir glossaire), inexplicable par la physique classique, etc.

 

     De nombreuses applications pratiques sont encore à venir parmi lesquelles je ne citerai que l'ordinateur quantique (encore au stade des balbutiements) dont la puissance devrait pulvériser les possibilités de nos ordinateurs actuels. Comme on le voit, la théorie quantique est bien loin de n'être qu'une simple théorie : tout aussi extravagants que ses principes soient apparus au début, ceux-ci n'ont jamais pu être démentis jusqu'à aujourd'hui. Au contraire, ils se sont révélés d'une précision redoutable qui a conduit à bien des découvertes.

 
     Est-ce à dire que tout est parfait ? Non car il reste cet énorme problème
que je rappelais dans le préambule. La théorie de la Relativité générale qui décrit l'univers du visible et la mécanique quantique qui raconte les phénomènes liés à l'atome sont strictement incompatibles. Or, on le sait bien, si les deux théories sont si parfaitement justes qu'elles ne peuvent être prises en défaut, comment se fait-il qu'elles ne puissent pas cohabiter ? C'est tout l'enjeu de la physique fondamentale des années à venir. Des milliers de scientifiques travaillent d'arrache-pied sur une unification dont on ne sait encore rien mais qui prendra le nom très explicite de « théorie du tout ».

 

 
   

Note : le chat de Schrödinger

 
      Il s'agit, bien entendu, d'une expérience toute théorique. Erwin Schrödinger (1887-1961), est un scientifique autrichien qui imagina cette expérience en 1935. L'idée est la suivante : un chat est enfermé dans une boîte avec un système qui se déclenche dès qu'il détecte la désintégration d'un atome radioactif (par exemple un compteur Geiger). Cette détection active un interrupteur entrainant la chute d'un marteau qui ira casser une fiole contenant un gaz mortel. Si cette désintégration a, disons, une chance sur deux de survenir au bout de 10 minutes, la mécanique quantique affirme que, tant que l'observation du phénomène n'a pas été réalisée, l'atome est en même temps dans les deux états (intact et désintégré). Comme le sort du chat dépend de cet état, le chat est en même temps mort ET vivant (et non pas mort ou vivant). C'est seulement l'ouverture de la boîte qui permettra le choix entre les deux états. L'expérience a pour seul souci de montrer combien ce qui peut être accepté pour une particule (un état « superposé ») peut être difficile à accepter dans le monde réel, le nôtre et celui du chat.

 

 

Glossaire

 
* effet tunnel : l'effet tunnel désigne la propriété que possède un objet quantique de franchir une barrière de potentiel, franchissement impossible selon la mécanique classique. Généralement, la fonction d'onde d'une particule, dont le carré du module représente l'amplitude de sa probabilité de présence, ne s'annule pas au niveau de la barrière, mais s'atténue à l'intérieur de la barrière, pratiquement exponentiellement pour une barrière assez large. Si, à la sortie de la barrière de potentiel, la particule possède une probabilité de présence non nulle, elle peut traverser cette barrière. Cette probabilité dépend des états accessibles de part et d'autre de la barrière ainsi que de son extension spatiale. L'effet tunnel est à l'œuvre dans :
. les molécules : NH3, par exemple,
. les modélisations des désintégrations (fission, radioactivité alpha),
. les transistors,
. certaines diodes,
. différent types de microscopes,
. l'effet Josephson. (in Wikipedia France)

 

 

Images :

 

     b. La lumière, à la fois corpusculaire et ondulatoire (Caustiques de lumière après deux surfaces d'eau © Eric J. Heller. in strangepaths.com)

     c. La théorie des supercordes, qui vise à unifier la mécanique quantique et la relativité générale, suppose l'existence de dimensions supplémentaires dans l'espace-temps. Celles-ci pourraient être "compactes" et "enroulées" sur elles-mêmes sous la forme de variétés de Calabi-Yau, dont une possible est présentée sur cette image en 3 dimensions. Image © Jean-Francois Colonna (in www.journaldunet.com)

(Pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

  
Addendum du 7 janvier 2008 : la théorie de Garrett Lisi

 
     Garrett Lisi, un scientifique américain hors-norme (1) a publié fin 2007 un article retentissant dont le titre semble à lui seul une provocation : « Une théorie du tout exceptionnellement simple ». Il nous dit « s'être rendu compte, au bout de 10 ans de travail acharné, que sa recherche d'unification entre physique quantique et gravitation a pour solution une structure géométrique, le groupe de Lie E8, permettant de décrire toutes les propriétés des particules de matière et de force. » Son explication étant incompatible avec la théorie des cordes à laquelle se réfèrent la plupart des physiciens fondamentalistes, ceux-ci n'ont pas tardé à réagir avec véhémence. En revanche, d'autres crient à la découverte géniale. Bref, soudainement beaucoup de remue-ménage dans le Landerneau scientifique ! Qui a raison ? Est-on devant une extraordinaire intuition pouvant conduire au Nobel ou face à un pétard mouillé façon « mémoire de l'eau » ? Il est certainement trop tôt pour le dire. Je me suis rendu sur le site du chercheur (http://arxiv.org/pdf/0711.0770) mais je suis bien sûr incapable de comprendre les équations qui y figurent... Il est donc urgent d'attendre. Quand même ! S'il y avait quelque chose là-dessous ce serait une découverte majeure, fondamentale, comme il n'en existe qu'une seule par siècle (et encore !)...

     Rejetée par de nombreux auteurs, la théorie de Lisi devrait faire l'objet d'une vérification expérimentale dans les années à venir, notamment au CERN (par son accélérateur de particules). On saura alors ce qu'il en est puisque, selon Lisi lui-même, sa théorie doit être prise globalement, un seul résultat négatif l'invalidant totalement.


(1) hors norme car ce chercheur indépendant divise sa vie entre la recherche fondamentale... et le surf ou autre snowboard. Tous reconnaissent qu'il sait vraiment de quoi il parle mais est-ce suffisant ?

 

 

Mots-clés : Max Planck - Albert Einstein - Niels Bohr - théorie non relativiste - nuage électronique - principe d'exclusion - non localité - photon - décohérence - Erwin Schrödinger - supraconduction - effet tunnel - ordinateur quantique - théorie du tout - théorie des cordes - Garett Lisi

(les mots en blanc renvoient à des sites d'informations complémentaires)

 

 

 

  

Sujets apparentés sur le blog :

 

1. théorie de la relativité générale

 

2. la théorie des cordes ou l'Univers repensé

 

3. le boson de Higgs

 

4. les constituants de la matière

 

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

 

l'actualité du blog se trouve sur FACEBOOK

 

Mise à jour de l'article : 15 février  2016

Partager cet article

Repost 0
Published by cepheides - dans physique
commenter cet article

Présentation

  • : Le blog de cepheides
  • Le blog de cepheides
  • : discussions sur la science (astronomie, paléontologie, médecine, éthologie, etc.) à partir d'articles personnels.
  • Contact

dépôt légal

copyrightfrance-logo17

Recherche

traduire le blog

drapeau-anglais.png
drapeau-allemand.png

.

.

.

 POUR REVENIR À LA PAGE D'ACCUEIL : CLIQUER SUR LE TITRE "LE BLOG DE CEPHEIDES" EN HAUT DE LA PAGE 

 

Visiteurs depuis la création du blog (2008) :

Visiteurs actuellement sur le blog :

 

 

Sommaire général du blog : cliquer ICI

 

du même auteur

"Camille" (roman)

cliquer ICI

 

"Viralité" (roman)

cliquer ICI

 

"petites tranches de vie médicale"

(souvenirs de médecine)

cliquer ICI

 

"la mort et autres voyages"

(recueil de nouvelles)

cliquer ICI

Catégories