Overblog
Suivre ce blog Administration + Créer mon blog
Le blog de cepheides

Le blog de cepheides

articles de vulgarisation en astronomie et sur la théorie de l'Évolution

Résultat pour “nova supernova

Publié le par cepheides
Publié dans : #astronomie
le Soleil n'est pas visible ici car trop petit

le Soleil n'est pas visible ici car trop petit

 

   En astronomie il existe une curiosité : les étoiles « moyennes » n’y ont pas droit de cité. En effet, les étoiles sont seulement divisées en deux grandes catégories, les naines (comme le Soleil qui est une naine jaune) et les géantes. Parmi ces dernières, il existe des géantes bleues, des supergéantes rouges ou blanches, d’autres encore correspondant souvent à différents stades de leur évolution. Au point qu’ on finit par un peu tout mélanger… Essayons de mettre un peu d’ordre dans tout cela.

 

 

classification des étoiles

 

   Longtemps, les étoiles ont été classées par nos ancêtres en fonction de leur apparente luminosité à l’œil nu mais c’était illusoire : certaines étoiles, proches, sont aussi brillantes que d’autres, bien plus grosses et lumineuses mais beaucoup plus éloignées. C’est même cette erreur de perspective qui poussa à l’association d’étoiles en apparence voisines dans des constructions imaginaires, les constellations, qui permirent dans un premier temps aux caravaniers, puis aux marins, de mieux se repérer la nuit venue. Avec l’apparition des outils d’observation modernes, il s’avéra évident que l’on devait trouver d’autres moyens d’identification pour ces astres bien différents de ce que l’on croyait.

 

   Les étoiles possèdent quatre propriétés principales : leur température de surface,  leur gravité de surface, leur masse, et leur luminosité. Ce sont ces caractéristiques qui vont permettre d’associer à chaque étoile un groupe spectral. En résumé, la répartition de l’énergie lumineuse d’une étoile rapportée à sa longueur d’onde identifiera le spectre de l’étoile. Plus une étoile est chaude et plus sa couleur va tendre vers le bleu alors que, à l’inverse, moins elle sera chaude et plus elle ira vers le rouge. De ce fait, un moyen sommaire de savoir la température de surface d’une étoile est donc d’apprécier sa couleur. Dans un ordre décroissant de température, une étoile sera violette (la plus chaude), bleue, blanche, jaune, orange et rouge (la moins chaude). Il s’agit là d’une loi basique de la physique : plus un corps est chaud et plus les photons qui s’en échappent sont énergétiques et donc plus leur longueur d’onde est courte. On peut être encore plus précis en analysant différentes stries - les raies d’absorption - qui donnent à chaque étoile une caractéristique bien particulière : son type spectral.

 

classification de Harvard

 

   La classification de l’observatoire de Harvard (USA) fut le fruit de l’énorme travail de Henry Draper et de ses successeurs, publié dans le Henry Draper Catalogue, paru en 1924 et contenant les caractéristiques spectrales (fondées surtout sur les températures de surface) de plus de 225 000 étoiles. Elle reconnaît sept types spectraux principaux identifiés par des lettres majuscules : O, B, A, F, G, K et M. Les étoiles marquées O sont les plus chaudes (donc les plus bleues) tandis que celles de classe M sont les plus froides (ou plutôt une géante bleue Alcyonles moins chaudes) et donc rouges. On peut se demander pourquoi le choix de telles lettres alors qu’il eût été facile de s’en tenir à l’ordre alphabétique. L’explication est comme souvent historique : on commença par classer les étoiles en fonction des raies d’absorption de leurs spectres, d’abord l’hydrogène puis d’autres corps tels le calcium, le sodium, etc. Les anglo-saxons ont un bon moyen mnémotechnique pour se souvenir de cette curieuse classification avec la phrase suivante : « Oh, Be A Fine Girl (Guy), Kiss Me ! ».

image : Alcyon, une géante bleue de type O ou B

 

   À cette notion de spectre, on ajoute celle de luminosité (numérotée en chiffres romains de I à VI) ce qui permet de différencier les étoiles normales de celles ayant déjà évolué en géantes. En effet, il existe, on l’a déjà dit, une relation entre cette luminosité et la température de surface (calculable donc par spectroscopie) : on peut, à partir de cette relation, déduire le rayon d’une étoile.

 

   Après avoir caractérisé chacune des étoiles observées, on a dressé une « carte » de leur répartition dans un grand diagramme.

 

 

diagramme de Hertzsprung-Russell…qu’on appellera plus aisément le diagramme HR

 

   Au début du XXème siècle, deux scientifiques (Hertzsprung et Russell) travaillèrent (séparément) sur une carte capable de classer visuellement les étoiles. Leur diagramme représente la luminosité de ces astres en fonction de leur température et, par convention, on aura la luminosité en ordonnée et la température en abscisse.

 

le diagramme de Hertzsprung-Russell

 

   Quel est l’intérêt d’un tel diagramme ? Eh bien, il permet de deviner où en est de son existence une étoile particulière et de repérer assez facilement tous les astres qui, pour une raison ou une autre, s’écartent du groupe moyen principal. En effet, on peut y reconnaître deux grands groupes d’étoiles : le groupe le plus important le long d’une diagonale et un groupe moins important mais néanmoins conséquent au dessus.

 

   La diagonale (qui va du coin supérieur gauche, chaud et lumineux, au coin inférieur droit, froid et peu lumineux) est appelé « séquence principale » et c’est là que la majorité des étoiles passe le plus clair de leur temps (90%) à tranquillement brûler leur hydrogène. Certaines d’entre elles, comme les naines rouges, peuvent rester à cet endroit du graphe durant des dizaines de milliards d’années.

 

   En revanche, un groupe important d’étoiles se situe au dessus de la séquence principale ; ce sont des géantes et c’est à elles que nous allons aujourd’hui nous intéresser. Enfin, en dessous de la diagonale principale, on trouve les naines blanches qui sont en réalité des cadavres d’étoiles qui se refroidissent lentement (plusieurs dizaines de milliards d’années avant de devenir des naines noires).

 

   Pour les étoiles, tout est une question de taille. Certaines d’entre elles ayant épuisé leur réserve d’hydrogène voient leurs couches externes gonfler et s’éloigner alors de leur cœur central ; dès lors, le froid de l’espace va agir sur elles et c’est de cette manière que l’étoile devient rouge. Ayant grossi en taille et perdu de la chaleur, ces étoiles quittent alors la séquence principale du diagramme HR. D’autres étoiles sont d’emblée des géantes, voire des supergéantes qui n’ont appartenu que très brièvement à cette séquence principale : c’est un autre type d’étoiles et un autre destin.

 

 

géantes bleues et supergéantes rouges

 

   Les géantes bleues sont très chaudes (25 000 K), très brillantes et leur type spectral est O ou B. Elles sont bien plus grosses que le Soleil, leur masse étant comprise entre 10 fois et 40 fois celle de notre étoile, voire plus. De ce fait, il s’agit d’astres dont l’espérance de vie est forcément courte (en termes astronomiques évidemment) puisqu’ils vivent entre 10 à 100 millions d’années, ce qui n’est rien par rapport au Soleil (10 milliards d’années) ou plus encore par comparaison avec les étoiles les plus nombreuses dans le cosmos, les naines rouges, dont chacune d’entre elles peut espérer exister durant plusieurs dizaines de milliards d’années.

 

   Comme toutes les autres étoiles, une géante bleue commence sa vie en transformant l’hydrogène en hélium sauf que sa taille gigantesque entraîne une énorme et rapide consommation de ce premier carburant. Très vite, l’étoile, à court d’hydrogène, va se mettre à fusionner son hélium, entraînant un gonflement de ses couches extérieures et donc leur refroidissement : l’étoile se transforme alors en supergéante rouge (seule exception, les très rares géantes bleues de masse supérieure à 40 fois celle du Soleil qui restent bleues). La fusion de l’hélium n’a qu’un temps : l’étoile va se mettre à fabriquer des métaux lourds tels que nickel, chrome, cobalt, titane, fer. C’est à ce stade qu’elle devient instable et explose en supernova (voir le sujet dédié ICI) : l’étoile mourante disperse alors sa matière dans l’espace sous la forme de nuages concentriques de matière et de gaz appelés rémanent de la supernova tandis que son cœur central peut évoluer de deux manières différentes selon la taille originelle de l’étoile : pour les moins massives, entre 8 et 30 à 40 masses solaires (MS), le cœur central se transforme en étoile à neutrons tandis que pour les plus grosses, il devient un trou noir.

image : le Soleil comparé à la supergéante rouge Cephei A

 

   Certaines des étoiles que nous venons de décrire évoluent en supernovas tandis que d’autres plus massives atteignent des températures fantastiquement élevées et expulsent dans le même temps leurs enveloppes externes. Parmi ces dernières, quelques unes arrivent au stade d’hypergéante jaune avant d’exploser mais la plupart ont un destin plus bizarre. Les étoiles les plus massives, qu’elles soient des supergéantes rouges ou bleues, évoluent transitoirement mais naturellement en un état bien particulier : ayant épuisé tout leur hydrogène, elle se mettent à fusionner leur hélium, puis des corps plus lourds. Elles produisent alors des vents stellaires extrêmement puissants, éjectant énormément de substance au point que leur corps central est totalement masqué, entouré par une bulle de matière. En réalité, cette phase ne dure pas longtemps (quelques centaines de milliers, voire un million d’années) avant qu’elles n’explosent en supernovas, une fois atteinte la transformation des métaux lourds en fer. Que leur origine soit une supergéante bleue, une supergéante rouge ou une étoile massive de la séquence principale, on appelle cette classe d’étoiles, des étoiles de Wolf-Rayet, en l’honneur des deux astronomes français qui les mirent en évidence au début du siècle dernier. Certains scientifiques pensent à présent qu’elles sont à l’origine des sursauts gamma que nous avons déjà évoqués (ICI).

image : étoile Wolff-Rayet 124 dans la  constellation de l'Aigle

 

   Certaines supergéantes rouges arrivées au stade terminal de leur vie sont bien connues des scientifiques depuis longtemps et surveillées attentivement par eux, à l’exemple de Bételgeuse (constellation d’Orion) ou d’Antarès (constellation du Scorpion) : on écrit parfois que les spécialistes s’attendent à ce qu’elles explosent « d’une minute à l’autre » ; il s’agit là d’un abus de langage car, bien que cette explosion soit théoriquement possible à tout moment, les durées en cause dépassent largement la vie d’un homme et même d’une civilisation.

 

 

Un exemple de supergéante rouge en fin de vie : Antarès

 

  Antarès doit son nom au dieu Arès (le dieu de la guerre des Grecs devenu Mars chez les Romains) car l’étoile est rouge à l’instar de la planète Mars qu’elle semblait « antagoniser » pour les anciens. C’est en réalité une étoile double située à 600 années-lumière de nous : l’étoile principale (Antarès A), celle qui nous intéresse, est une supergéante rouge tandis que sa compagne (Antarès B) est une géante bleue. Antarès A est immense puisque son diamètre est 888 fois celui du Soleil ce qui veut dire que si elle était à sa place, sa surface serait située au-delà de l’orbite de Mars… Comparé à cette supergéante, le Soleil apparaîtrait de la taille d’une petite bille à côté d’un ballon de football ! La luminosité d’Antarès est 10 000 fois plus importante que celle de notre étoile mais sa couleur rouge traduit sa faible température : 3 300° contre 5 500° pour le Soleil. Toutefois, c’est cette dernière caractéristique qui explique qu’une grande partie du rayonnement d’Antarès se fait dans l’infrarouge et, au bout du compte, la luminosité totale (dite biométrique) d’Antarès est de l’ordre de 60 000 fois celle du Soleil…

 

   Lorsque Antarès explosera en supernova, il est probable que sa lumière sera visible sur Terre même en plein jour ; il n’est toutefois pas certain que cet événement cataclysmique se produise durant la présence de l’Homme sur Terre, les « agendas » cosmiques et humains ayant peu à voir l’un avec l’autre.

 

 

géantes rouges

 

   En sus des étoiles naturellement géantes, les « naines » peuvent aussi se transformer en géantes lors de la dernière partie de leur vie (sauf celles d’une masse inférieure à 0,25 MS qui n’accèdent jamais à ce stade). Par quel mécanisme des étoiles de taille relativement modeste, comme le Soleil, peuvent-elles devenir des géantes rouges ? Revenons sur leur histoire.

 

   Il faut d’abord se souvenir du fait que toutes les étoiles débutent leur vie sur la séquence principale du diagramme HR où elles transforment paisiblement leur hydrogène en hélium. Leur plus ou moins longue présence à cet endroit dépend en réalité de leur taille. Prenons un exemple : en raison de sa grande surface, une étoile de deux masses solaires brûlera 10 fois plus vite son hydrogène que le Soleil alors que la quantité de son carburant n’est que deux fois plus élevée. La conséquence est strictement mathématique : cette étoile restera sur la séquence principale cinq fois moins longtemps. On comprend dès lors pourquoi les étoiles supergéantes sont repérées ailleurs que sur cette diagonale principale où leur présence est forcément très brève.

 

   Avec le temps, une étoile va donc voir progressivement diminuer son hydrogène et augmenter son hélium, un phénomène qui s’accompagne d’un léger accroissement de la luminosité de l’astre. Mais lorsque la quantité d’hydrogène arrive presque à épuisement, la combustion centrale s’arrête et les forces gravitationnelles commencent à prendre le dessus ; le noyau se contracte tandis que la température augmente d’où l’apparition d’une coquille périphérique d’hydrogène en fusion autour du centre stellaire : c’est le peu d’hydrogène restant qui est ainsi brûlé. Du gaz est alors expulsé vers l’extérieur ce qui aboutit à la dilatation de l’enveloppe externe de l’étoile. Cette dilatation entraîne un refroidissement : l’étoile devient en même temps géante et plus froide, donc rouge.

 

   Dans le noyau central qui ne contient plus que de l’hélium, la contraction continue tandis que la température augmente encore. Arrive le moment où les noyaux d’hélium vont eux-aussi fusionner, donnant à l’étoile une nouvelle source d’énergie. Toutefois, cette fusion durera bien moins longtemps que celle de l’hydrogène. Pour le Soleil, par exemple, on estime que, si la combustion de l’hydrogène sur la séquence principale, peut durer environ 10 milliards d’années (il est actuellement à mi-parcours), celle de l’hélium ne lui donnera que 2 milliards d’années supplémentaires d’espérance de vie.

 

   À ce stade de son existence, l’étoile est plus ou moins instable : en effet, la pression interne tend à dilater l’étoile mais les forces de gravitation ont l’effet inverse et, du coup, on assiste à des séquences de dilatation-contraction. Vu de loin, la taille de l’étoile n’est pas mesurable mais, par contre, chaque fois qu’il y a modification, la température - et donc la couleur - de l’étoile change… C’est ainsi que certaines étoiles variables ont été identifiées : ces étoiles dites pulsantes peuvent être très régulières dans leurs variations et c’est notamment le cas des céphéides qui ont permis, par le passé, de faire grandement avancer la connaissance des distances dans l’Univers.

image : cepheide RS Puppis et son cycle régulier de 5 à 6 semaines

 

   L’hélium venant à son tour à manquer, les réactions nucléaires le remplacent par d’autres éléments, tels l’oxygène ou le carbone. La situation à ce stade est devenue assez complexe : au centre subsiste un noyau éteint d’oxygène et de carbone avec autour une coquille d’hélium en fusion, elle-même entourée d’une coquille d’hydrogène également en fusion. L’étoile est instable et elle pulse. À chaque pulsation, une partie de l’enveloppe externe est éjectée, donnant l’impression de bouffées successives. Enfin, le noyau se retrouve pratiquement à nu. Comme il est très chaud, il va ioniser les gaz des différentes couches de l’enveloppe qu’il vient d’expulser donnant l’image d’une espèce de diamant trônant au centre d’une sphère lumineuse. Cette phase qui va durer entre 50 000 à 60 000 ans est appelé nébuleuse planétaire (les premiers observateurs pensaient qu’il s’agissait vraiment de planètes). Puis le gaz va se disperser et il ne restera plus que le noyau encore très chaud et très brillant qui sera baptisé du nom de naine blanche.

 

   Puisque, comme on l’a déjà signalé, la pression à l’intérieur du noyau est absolument colossale, l’objet qui résulte de toute ces transformations, la naine blanche, a à peu près la taille de la Terre… avec la masse du Soleil (quelques grammes de matière y pèsent autant que la Tour Eiffel). La naine blanche mettra des milliards d’années à perdre sa chaleur et sa luminosité pour aboutir enfin au stade de naine noire, un objet définitivement inerte.

 

 

Un exemple de naine blanche

 

   Il est très difficile d’observer une naine blanche parce que ces objets sont petits et que, progressivement, ils perdent de leur intensité lumineuse. C’est la raison pour laquelle n’ont pu être observées que des naines blanches relativement proches de nous, c’est-à-dire appartenant à la Voie lactée.

 

naine blanche HD 62166

 

   C’est notamment le cas de la naine blanche située au centre de la nébuleuse planétaire NGC 2240, dans la constellation de la Poupe. Elle fut pour la première fois observée par l’astronome britannique d’origine allemande William Herschel le 4 mars 1790 et répertoriée sous la dénomination HD 62166. Elle est assez facilement visible car il s’agit certainement d’une naine blanche très jeune et donc très chaude et lumineuse. On estime d’ailleurs sa chaleur à 200 000 K ce qui en fait tout simplement l’étoile la plus chaude actuellement connue. Dans l’image ci-dessus, on devine la naine au centre de ce qui est la nébuleuse planétaire en formation.

 

 

 

Les étoiles géantes sont rares et fragiles

 

   Nous avons déjà eu l’occasion de le préciser : dans notre galaxie (et il est totalement vraisemblable qu’il en soit de même dans les autres), la majorité des étoiles étant des naines, le plus souvent associées à d’autres étoiles dans ce que l’on appelle des systèmes binaires (ou, pour être plus exact, des systèmes multiples). Un peu comme une armée dont les géantes et supergéantes seraient les officiers supérieurs, le gros de la troupe étant représenté par les naines rouges.

 

   Les étoiles naissent en groupe, dans un halo puis, suivant leurs tailles respectives et les aléas de leur environnement, elles se séparent : il est ainsi impossible de savoir quelles étaient les étoiles ayant accompagné notre Soleil dans son halo de naissance. L’immense majorité des étoiles existantes ont des tailles voisines de celle du Soleil : les très petites (moins de 0,25 MS) sont aussi peu nombreuses que les géantes (8 MS et plus) et les supergéantes (à partir de 30-40 MS).

 

   Dans le halo primitif d’un groupe d’étoiles, il est difficile de savoir si la masse d’une étoile est acquise (tailles stellaires augmentées par accrétions successives) ou innée (géantes ou naines déterminées d’emblée) : les simulations informatiques sont valides dans les deux cas. Ce qui est certain, c’est que, à un moment donné, le nuage moléculaire préstellaire se fragmente en une certain nombre de condensations qui s’effondrent ensuite sur elles-mêmes pour donner naissance aux embryons d’étoiles.

 

   Les naines rouges sont très certainement les étoiles les plus nombreuses de l’Univers : entre 80 à 85% de l’ensemble. Si l’on se réfère à la Voie lactée, elles représentent alors à peu près 130 milliards d’étoiles… Les autres naines, jaunes et jaune-orangé notamment, sont estimées à environ 13% et, de ce fait, il ne reste que quelques pourcents pour les géantes (je rappelle que les naines blanches ne sont pas comptabilisées ici puisque ce ne sont plus des étoiles). Dans le tableau ci-joint, on peut, par exemple, se rendre compte de l’extrême rareté des supergéantes bleues (0,00003%).

 

 

Tableau des étoiles (classement_etoiles)

 

 

   Par une belle nuit d’été, en un endroit épargné par les lumières parasites qui, hélas, tendent aujourd’hui à se multiplier, il est possible à un observateur à la vue acérée de distinguer quelques milliers d’étoiles, bien loin évidemment des 150 milliards qui peuplent notre galaxie. En fait, il semble que ce soit trois mille étoiles. Parmi elles, aucune naine rouge qui sont pourtant les plus nombreuses : leur lumière qui ne dépasse pas 1% de celle du Soleil ne peut imprimer nos rétines et cela est vrai même pour la plus proche de nous, Proxima du Centaure.

 

   L’étoile la plus brillante de notre ciel nocturne est Sirius (1) étoile blanche de la séquence principale du diagramme HR, essentiellement visible parce que proche (8,5 années-lumière). Il en est de même pour Canopus (2) une supergéante peu massive qui rivalise avec elle quoique bien plus éloignée (310 années-lumière) et Arcturus (3), une géante rouge qui termine sa vie à 37 années-lumière de nous. On le comprend : les étoiles visibles de la Terre et qui ont passionné l’Homme depuis des millénaires sont soit proches, soit géantes comme la supergéante bleue Rigel (6) à 5630 années-lumière, ou la supergéante rouge Bételgeuse (9), l’une des plus grandes étoiles connues (env. 500 années-lumière aux dernières nouvelles). On pourrait presque dire que, à l’instar des vedettes de variétés, les étoiles géantes dominent notre ciel tandis que l’immense majorité du peuple stellaire nous demeure invisible.

 

 

 

Sources :

1. Wikipedia France et en.wikipedia.org

2. Science et Vie.com

3. Encyclopaediae Britannica

4. https://www.astronomes.com

5. http://physique.unice.fr

 

 

Images :

 

1. comparaison d'étoiles (sources : www.astrosurf.com)

2. la géante bleue Alcyon (sources : fr.wikipedia.org)

3. diagramme de Hirschprung-Russell (sources : Richard Powell/Leovilok/Wikimedia Commons)

4. le Soleil comparé à une supergéante rouge (sources : astronomie.skyrock.com)

5. étoile de Wolff-Rayet WR124 (sources : www.astrosurf.com)

6. le céphéide RS Puppis (sources : trustmyscience.com)

7. naine blanche HD 62166  (sources : youinf.ru)

8. répartition des types d'étoiles (zestedesavoir.com)

 

 

 

Mots-clés : Henry Draper - diagramme de Hertzsprung-Russell - séquence principale - naine blanche - naine rouge - géante bleue - supergéante rouge - étoile à neutrons - trous noirs - hypergéante jaune - étoile de Wolf-Rayet - géante rouge - céphéides

(les mots en gris renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

1. cepheides

2. trous noirs

3. mort d'une étoile

4. novas et supernovas

5. la saga des rayons cosmiques

6. la Voie lactée

7. la mort du système solaire

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

dernière mise à jour : 22 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie

Parues sur le fil Facebook du blog, voici quelques "brèves" supplémentaires

 

 

 

 

L'AMAS GLOBULAIRE OMÉGA DU CENTAURE

 

amas globulaire Omega du Centaure

 

     Un amas globulaire est un conglomérat d'étoiles toutes liées ensemble par les forces de la gravité. Ils sont contemporains de la naissance de notre galaxie il y a environ 13 milliards d'années (et ont donc à peu près trois fois l'âge du Soleil qui est de 4,57 milliards d'années).

 

     Certains amas finissent par se rapprocher trop près de la Voie lactée et, progressivement dilacérés, ils sont absorbés par elle. De nos jours, il reste 200 amas globulaires indépendants et le plus grand d'entre eux est Oméga du Centaure.

 

     Oméga du Centaure, uniquement visible de l'hémisphère sud, est situé à 18 000 années-lumière de nous et, présentant un diamètre de 150 années-lumière, il renferme à peu près 10 millions d'étoiles ce qui en fait le plus grand des amas globulaires gravitant autour de notre galaxie.

 

     Normalement, un amas globulaire, loin des phénomènes actifs galactiques, est composé d'étoiles plutôt vieilles et de quelque "traînards bleus" qui sont des étoiles jeunes créées à partir de plus vieilles en raison des forces de liaison considérables qu'exerce notre galaxie (voir le sujet dédié dans le blog).

 

     Oméga du Centaure est un cas différent : lui, il contient des étoiles de toutes sortes, en âge et en variété, ce qui fait dire aux scientifiques que, depuis sa création il y 12 milliards d'années environ, il a vécu une histoire très compliquée...

 

 

Sur le blog, pour en savoir plus : amas globulaires et traînards bleus
https://cepheides.fr/article-16855581.html

Photo : l'amas globulaire Oméga du Centaure NGC 5139
(Image Crédit & Copyright: Roberto Colombari )

 

 

 

 

 

ÊTA CARINAE, LA BOMBE À RETARDEMENT

 

     Située à environ 8000 années-lumière de nous, dans le ciel austral, Êta Carinae (constellation de la Carène) est une étoile supergéante - et même hypergéante - puisqu'elle est 5 millions de fois plus lumineuse que le Soleil tandis qu'elle possède 150 fois sa masse. Hypergéante ? Qu'on en juge : son diamètre est 1000 plus grand que celui du Soleil ce qui veut dire que, situé à la place de notre étoile, elle s'étendrait bien plus loin que Jupiter !

 

en 1843, la pulsion (qui n'a pas conduit à la destruction de l'étoile) ne pouvait être vue par les instruments d'alors. Aujourd'hui, le télescope spatial Hubble nous montre cet "éclat" ou outburst de 1843 appelé la nébuleuse de l'homonculus (Homunculus nebula), en forme de grosse haltère (crédits : téléscope Hubble, NASA)

 

     Êta Carinae est instable et on peut voir sa luminosité varier au cours du temps : en 1843, elle est même devenue quelque temps l'étoile la plus brillante du ciel alors que, aujourd'hui, elle est quasi-invisible... En réalité, il s'agit d'un système binaire, c'est à dire un couple d'étoiles dont l'une (Êta Car A) est une hypergéante variable bleue, une des étoiles les plus volumineuses de notre galaxie (il y en a peut-être une dizaine aussi grosse qu'elle dans toute la Voie lactée, à rapporter aux 150 milliards d'étoiles que contient notre galaxie). Il s'agit bien sûr d'une étoile à la vie brève (tout est relatif !).

 

     Les scientifiques savent donc qu'elle va exploser bientôt puisqu'elle consomme actuellement les dernières couches superficielles de son hydrogène avant de terminer sa vie en hypernova. Oui mais quand, cette fin cataclysmique ? Très bientôt, nous dit-on, sauf que la longueur de la vie d'une étoile n'est pas comparable à celle des hommes. Demain ? Dans 10 ans ? Dans 1000 ans ? Peut-être même que, à l'heure où l'on en parle, elle a déjà explosé puisque sa lumière met 8 000 ans à nous parvenir...

 

     Voir l'explosion d'une telle étoile (la phase initiale ne durant en fait que quelques minutes) puis son expansion en nova est un rêve d'astronome... peut-être sur le point de se réaliser puisqu'on construit actuellement au Chili un télescope, le LSST (Large Synoptic Survey Telescope) doté d'un miroir exceptionnel de 8,4 m et d'une caméra de 3 milliards de pixels. Il sera capable de scanner le ciel entier du Chili et on sait que plus il y a d'étoiles observées, plus on a de chances de tomber sur un phénomène astronomique... comme pourrait être celui de l'explosion d'Êta Carinae qu'il surveillera tout particulièrement.

 

 

Pour en savoir plus : https://cepheides.fr/article-de-l-astronomie-novas-et-supern…

 

 

 

 

 

LA NÉBULEUSE DE L'ŒIL DU CHAT

 

nébuleuse de l'oeil du chat

 

     Répertoriée sous le code NGC 6543, la nébuleuse de l'œil du chat est une des plus célèbres nébuleuses planétaires de l'astronomie. Nébuleuse planétaire ? Elles n'ont en réalité rien à voir avec les planètes : l'appellation date du temps où, les instruments d'observation étant moins performants, les scientifiques pensaient qu'il s'agissait de planètes. Comme souvent, l'appellation impropre est restée.

 

     Une nébuleuse planétaire est la résultante de la fin de vie d'étoiles comme notre Soleil. Lorsque l'étoile a fini de consommer son hydrogène, les forces de gravitation l'emportent alors et l'hélium initialement produit devient de l'oxygène, du carbone, etc. Bilan : l'étoile gonfle pour devenir une géante rouge alors que son cœur se transforme en naine blanche. C'est cette expansion de matière dans l'espace qui donne naissance aux nébuleuses planétaires, une enveloppe qui finira par se dissoudre dans le vide en quelques dizaines de milliers d'années...

 

     La nébuleuse de l'œil du chat est situé à environ 3300 années-lumière, du côté de la constellation du Dragon et elle est âgée d'environ 1000 ans. Elle correspond à la fin de vie d'une étoile de taille solaire (appartenant probablement à un système binaire) et est composée de plusieurs enveloppes de matière se rapportant à des événements antérieurs de l'étoile estimés par les spécialistes à plusieurs dizaines de milliers d'années.

 

     Notre Soleil finira ainsi par une nébuleuse planétaire lors de sa transformation finale en géante rouge tandis que son cœur sera transformé en naine blanche, un corps brûlant hyperdense qui mettra des milliards d'années à s'éteindre pour ne plus devenir qu'une boule de cendres, une naine noire. Cette fin est inéluctable mais qu'on se rassure : elle ne devrait pas survenir avant environ cinq milliards d'années... (voir l'article qui suit)

 

Images : la nébuleuse de l'œil du chat
Crédits photo : cidehom.com)

 

 

 

 

 

LA MORT DU SYSTÈME SOLAIRE

 

     Notre étoile étant à la moitié de sa vie, elle brillera encore durant 4,5 milliards d’années environ jusqu’à avoir épuisé tout son carburant d’hydrogène, un temps où les Hommes auront depuis longtemps disparu. Le Soleil se transformera alors en géante rouge qui enverra son enveloppe externe dans l’espace sous la forme d’une nébuleuse planétaire tandis que son cœur devenu hyperdense évoluera en naine blanche.

 

     Cette naine blanche anéantira les quelques planètes ayant échappé à la phase «

naine blanche détruisant son système planétaire (vue d'artiste)

géante rouge » et on ne sait pas vraiment si la Terre, de toute façon carbonisée, existera encore pour être détruite par elle. Ces événements sont du domaine d’un lointain avenir mais la NASA a pu récemment observer une situation identique grâce à son télescope spatial Kepler.

 

     L’observation a concerné la naine blanche WD 1145_1017 située à 570 années-lumière de la Terre, dans la constellation de la Vierge. Kepler a mis en évidence une fluctuation régulière de luminosité autour de la naine ce qui traduit la présence d’un corps céleste tournant autour d’elle, à savoir une planète. Plus encore, cette planète laisse derrière elle une trainée de matière qui signe sa destruction progressive. Peu à peu, la naine blanche « arrache » la matière de sa planète avant de la désintégrer dans son cœur.

 

     Devenue solitaire, la naine blanche se refroidira et baissera d’intensité lumineuse durant des centaines de millions d’années avant de terminer son existence en naine noire et rejoindre l’anonymat du grand cimetière stellaire.

 

 

Pour en savoir plus : sur le blog de céphéides : mort du système solaire (https://cepheides.fr/article-16939405.html)

Image : vue d’artiste de la naine blanche WD 1145_1017 et de sa planète

(sources : www.ca-se-passe-la-haut.fr)

 

 

 

 

LES CÉPHÉIDES, DES PHARES DANS L'ESPACE

 

Henrietta Swan LEAVITT (1868-1921)

 

     Une céphéide (la première à être repérée le fut dans la constellation de Céphée, d'où le nom) est une étoile très spéciale car sa luminosité varie de façon cyclique : elle pulse. Du coup, en calculant le temps que mettent les ondes lumineuses à la parcourir, on peut calculer sa luminosité réelle et la comparer avec la luminosité apparente de l'étoile vue de la Terre : on peut alors connaître la distance à laquelle la céphéide se situe...

 

     Cela n'a l'air de rien mais c'est grâce à ces étoiles qu'on a compris la taille immense de l'Univers et l'existence de galaxies en dehors de notre Voie lactée. Sans elles, l'Univers serait probablement resté longtemps incompréhensible !

 

     Cette découverte capitale - une des plus importantes du vingtième siècle - on la doit à une astronome américaine du nom de Henrietta Leavitt qui comprit l'intérêt de ces étoiles dans les années 1920 et émit une loi les régissant. Vous ne connaissez pas son nom ? Normal, elle ne fut jamais récompensée : en ces années plutôt masculines, ce sont ses "directeurs d'étude" qui en eurent tout le crédit. Et pourtant, c'est grâce à elle que, quelques années plus tard, Hubble put mettre en évidence l'expansion de l'Univers et formuler sa célèbre loi.

 

     Conscients de l'injustice, le comité du prix Nobel se mit enfin en quête de l'astronome américaine mais, les années ayant passé, elle était décédée et on sait qu'un Prix Nobel ne peut être remis à un lauréat que de son vivant...

 

     En astronomie, on parle de la "loi de Hubble", du "diagramme de Hertzprung-Russel", de la "masse de Chandrasekhar" mais seulement de la loi "période-luminosité" pour les céphéides. Comment faire pour que cette loi devienne la loi de Leavitt ? Ce ne serait pourtant que justice que d'associer le nom de ce merveilleux esprit à sa découverte, une des plus importantes de l'astronomie moderne...

 

 

Pour en savoir plus, cliquer ici : http://cepheides.fr/article-16821635.html

Photo : Henrietta Swan Leavitt (1868-1921)
Crédits : womanastronomer.com

 

 

 

 

 

POUPONNIÈRE D'ÉTOILES ET VENT STELLAIRE

 

     La pouponnière stellaire d'Orion, située à environ 1500 années-lumière de nous, renferme un bon millier de jeunes étoiles illuminées par un groupe voisin d'étoiles massives et flamboyantes appelé le Trapèze.

 

     Une de ces étoiles est la jeune LL Orionis, une étoile variable en pleine formation qui engendre un vent stellaire très puissant (bien plus puissant que celui du Soleil, étoile arrivée depuis longtemps à maturité).

 

 

 

     La pouponnière d'Orion est une nébuleuse, c'est à dire un conglomérat de gaz divers dont l'échauffement par les forces de gravitation provoque justement des flambées de nouvelles étoiles. Ces gaz se déplacent lentement contrairement au vent provoqué par LL Orionis : c'est la raison pour laquelle un front se crée lorsque ce dernier heurte de plein fouet les gaz nébulaires. Sur la photo ci-dessus prise par le télescope spatial Hubble en 1995, on distingue une sorte de boule entourant LL Orionis tandis que sur la droite on peut apercevoir les gaz provenant du groupe de Trapèze (en dehors de la photo) : on pourrait croire l'étrave d'un bateau avançant dans l'eau... sur une demi-année-lumière.

 

     De tels phénomènes sont fréquents dans cet endroit et se répètent à chaque fois qu'une nouvelle étoile se heurte aux gaz nébulaires, comme on peut le voir également en haut et à droite de la photo.

 

 

Pour en savoir plus sur le blog : la voie lactée (http://cepheides.fr/…/02/de-l-astronomie-la-voie-lactee.html)

Image : Hubble Heritage Team (AURA / STScI), C. R. O'Dell(Vanderbilt U.), NASA

 

 

 

 

 

LES PILIERS DE LA CRÉATION

 

 

     Parmi les nébuleuses, une des plus célèbres est un fragment de la nébuleuse de l’Aigle, appelé « les piliers de la Création » : on peut en voir l’image ci-dessus telle que prise par le télescope spatial Hubble en 1995.

 

     Situé à environ 7000 années-lumière de nous, il s’agit d’un assemblage très dense de poussières et d’hydrogène moléculaire. Si dense, même, qu’on y devine l’apparition d’une probable nouvelle étoile par contraction gravitationnelle des masses de gaz dans le piler central. Les « piliers » sont immenses puisque le plus important d’entre eux mesure environ quatre années-lumière, soit 6400 fois la distance qui sépare le Soleil de Pluton (ou la distance entre le Soleil et sa plus proche voisine, Proxima du Centaure), tandis que leur masse totale est estimée à 200 fois celle de notre étoile.

 

     Les scientifiques estiment qu’il faudra environ trois millions d’années pour que toute cette matière se disperse après avoir donné naissance à de nombreuses étoiles. Trois millions d’années, c’est un battement de cil à l’échelle de l’Univers mais une durée immense pour les humains que nous sommes (il y a 3 millions d’années, Homo sapiens était loin d’exister dans un monde livré aux seul hominidés préhumains). Sauf que…

 

     ...Sauf que, suite à une observation dans le domaine infrarouge, en 2007, par le télescope spatial Spitzer, certains scientifiques se demandent si les piliers n’ont pas été détruits par l’onde de choc d’une supernova ayant explosé il y a 6000 ans ! Malheureusement, la nébuleuse étant située à 7000 années-lumière, il faudra encore attendre 1000 ans avant d’avoir la réponse…

 


Pour en savoir plus, sur le blog : distances et durées des âges géologiques (http://cepheides.fr/article-32963219.html)

Image : les piliers de la Création
Sources : www.esa.int

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 22 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie
Abell 39, constellation d'Hercule
le linceul d'une étoile : Abell 39

 

 

     Durant l'année écoulée, quatorze articles ont été publiés dans la section astronomie. On les trouvera ci-après brièvement résumés et selon leur ordre de parution. Bien entendu, le titre du sujet renvoie à l'article correspondant à l'aide d'un simple clic.

  

 
          * Astronomie et astrologie
 
  Il existe souvent une (regrettable) confusion entre les deux termes (deux petites lettres les séparent) et l’article rappelle leur différence fondamentale : alors que l’astronomie est une véritable et remarquable discipline scientifique, l’astrologie n’est qu’une vue de l’esprit sans aucun fondement scientifique, la simple survivance d’un passé superstitieux.
Mots-clés : astronomie, astrologie, constellations, constellation du Scorpion.
Commentaires : 7

 

          * céphéides
     C’est de ce type bien particulier d’étoiles que le blog tire son appellation. Ces étoiles sont très spéciales : leur luminosité est variable (mécanisme commenté) selon un rythme prévisible ce qui permet par un simple calcul de connaître leur éloignement. De ce fait, il devient possible d’estimer la distance qui nous sépare d’une autre galaxie en étudiant les céphéides qu’elle contient.
Mots-clés :
céphéides, Henrietta Leawitt, luminosité intrinsèque, luminosité apparente, loi de Hubble.
Commentaires : 4

 

          * Place du Soleil dans la Galaxie
     Le ciel est immense et notre Soleil se trouve au sein d’une galaxie, la Voie lactée (ou « la Galaxie »), entre des milliards d’autres qui composent l’univers solide. Mais où exactement parmi les milliards d’étoiles de la Voie lactée ? A-t-on les moyens de le savoir ? Et que peut-on en conclure sur les particularités du système solaire ?
Mots-clés :
voie lactée, Soleil, bras spiraux, bras d’Orion, parsec
Commentaires : 2

 

          * Amas globulaires et trainards bleus
     Témoins d’un passé immémorial, les amas globulaires fermés renferment des étoiles qui, nées ensemble, ont toujours vécu ensemble. Il en existe théoriquement de moins en moins parce qu’ils finissent par être absorbés par les galaxies dont ils sont les satellites. Curieusement, il se trouve en leur sein des étoiles jeunes ce qui semble contradictoire : la création de nouvelles étoiles est donc toujours possible ?
Mots-clés :
amas fermés, trainards (ou trainardes) bleu(e)s, diagramme de Hertzsprung-Russel, distances galactiques, binaires, pulsars
Commentaires : 5

 

          * Mort d’une étoile
     Comme toute structure de l’Univers, les étoiles naissent et disparaissent. Selon leurs tailles, elles évoluent de façon fort différente. Que deviennent-elles vraiment et quels sont les astres auxquels elles donnent naissance en mourant ? Quelle est la véritable place de notre Soleil dans cet organigramme ? Décidément, la Nature est immuable… et pleine de surprises.
Mots-clés : diagramme de Hertzsprung-Russel, naine rouge, naine blanche, supergéante rouge, supernova, étoile à neutrons, trou noir, étoiles primitives, Kelvin
Commentaires : 4

 

          * Fonds diffus cosmologique
     Depuis la mise en équation par Einstein de la théorie de la relativité générale, les astronomes se disputaient sur la nature de l’Univers. Deux théories s’affrontaient : celle du « Big Bang » (l’Univers est issu d’un « noyau » originel) et celle de l’Univers stationnaire (l’Univers est en création continue et en équilibre permanent). Laquelle choisir ? C’est tout à fait par hasard que deux ingénieurs du téléphone vont permettre de trancher en faveur de la première à la suite de leur découverte du fonds diffus cosmologique, découverte qui leur vaudra le Nobel…
Mots-clés : big bang, univers stationnaire, Penzias, Wilson, principe cosmologique, expansion de l’univers, constante de Hubble
Commentaires : 2

 

          * Matière noire et énergie sombre
     Les étoiles sont sujettes à la gravitation qui explique leurs mouvements. Oui mais quand on observe les vitesses de rotation de ces étoiles dans les galaxies, on se rend compte que celles-ci sont trop élevées par rapport à la masse des objets visibles de l’univers : il manque une énorme quantité de matière (25%) que les astronomes ont appelé « matière noire » puisqu’ils ne savent pas ce que c’est. Pire encore, l’accélération de l’expansion de l’univers ne s’explique que s’il existe une tout aussi mystérieuse « énergie sombre » (75%) totalement inconnue. Bref, ce que l’on voit ne représente que 5% de notre univers… 
Mots-clés : matière sombre, énergie noire, Zwicky, Rubin, neutrino, wimp, expansion de l’univers
Commentaires : 3

 

          * Étoiles doubles et système multiples
     C’est un fait : les étoiles solitaires comme notre Soleil ne sont pas majoritaires dans l’Univers. La plupart des étoiles sont groupées par deux ou plus. Comment ces systèmes multiples peuvent-ils exister ? Des planètes peuvent-elles graviter autour d’eux ? Quelle pourrait alors être la couleur de leurs ciels ? Des questions parfois à la limite de l’astronomie et de la poésie.
Mots-clés : binaires, binaires X, exoplanètes, nova, runaway stars
Commentaires : 14

 

          * La Terre, centre du Monde
     Longtemps, les hommes ont cru que la Terre – c’est à dire eux – était le centre du Monde. Cruelle illusion : le système solaire – et donc la Terre – est organisé autour d’une étoile banale située en périphérie d’une galaxie, la Voie lactée, qui en contient des milliards d’autres. Plus encore, notre Galaxie n’est qu’un simple objet parmi des milliards d’autres galaxies composant l’Univers visible. La Terre : moins qu’un grain de sable sur une plage immense… mais habité ! Et ailleurs ?
Mots-clés : pythagoriciens, Aristote, Copernic, Galilée, Voie lactée, groupe local, effet doppler, big bang
Commentaires : 2

 

          * Théorie de la Relativité générale
     On avait beau faire et refaire les calculs, les mathématiques de Newton ne suffisaient pas à expliquer certaines observations astronomiques. C’est Einstein qui permettra de résoudre ces apparents paradoxes grâce à sa géniale mise en équation de la Relativité, restreinte d’abord, puis générale. On peut dire que c’est à la lumière de cette extraordinaire théorie que les Hommes ont pu commencer à comprendre l’Univers dans lequel ils se trouvent…
Mots-clés : relativité générale, relativité restreinte, mirages gravitationnels, étoiles à neutrons, trous noirs, théorie du tout
Commentaires : 10

 

          * La mort du système solaire
     Dans longtemps, très longtemps, le système solaire, comme tous les objets vivants ou non de l’Univers, disparaitra. C’est la grandeur de l’esprit humain que de pouvoir, sans gros risques de se tromper, prévoir une telle apocalypse grâce à son sens de l’observation et ses possibilités de déduction. Chaque jour, des étoiles comme le Soleil meurent, dans notre galaxie ou une autre, entrainant leurs cortèges de planètes (on sait à présent qu’elles existent) avec elles. Il suffit donc d’imaginer…
Mots-clés : naine jaune, étoiles primordiales, géante rouge, supergéante rouge, nébuleuse planétaire, naine blanche
Commentaires : 12

 

          * Les galaxies
     Aussi loin que porte le regard de l’observateur à travers un télescope, il découvre de petites taches de lumière, parfois à la limite du perceptible : les galaxies. Il n’y a en fait pas si longtemps que l’on sait qu’elles existent : jusqu’à peu on croyait que l’univers tout entier était contenu dans notre seule galaxie, la Voie lactée. C’était encore une erreur anthropocentrique : les galaxies se comptent par milliards, chacune renfermant des milliards d’étoiles. Sont-elles toutes semblables ? Comment sont-elles distribuées dans l’univers ? Et notre galaxie dans tout ça ? 
Mots-clés : Emmanuel Kant, catalogue de Messier, spirales, spirales barrées, elliptiques, irrégulières, lenticulaires, amas, superamas
Commentaires : 9

 

          * Trous noirs
     Il est rare qu’un concept astronomique soit autant cité dans la vie courante et pourtant aussi mal compris. L’article est l’occasion de revenir sur ce que nous savons des trous noirs : quelle origine ? quelles propriétés ? où se trouvent-ils ? que peuvent-ils nous apprendre de l’Univers ? Retour sur ces étranges objets…
Mots-clés : étoiles massives, puits gravitationnel, étoiles à neutrons, horizon des événements, singularité, noyau galactique actif, quasars, blazars, radiogalaxies
Commentaires : 7



                
                                        amas de galaxies dans Persée

 

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie

 

 

 

 Deux satellites ont apporté pour la première fois la preuve d’un gigantesque trou noir déchirant et absorbant une petite partie d’une étoile, a annoncé, mercredi 18 février 2004, la NASA.(sources : http://www.interet-general.info/)

 

 

 

     Le terme de « trou noir » est bien connu du grand public, du moins par la partie de ce public s’intéressant à la science-fiction, et ce à cause des différentes séries télévisées qui font appel à ce phénomène céleste d’autant plus aisément qu’il est mystérieux et mal expliqué. On se souvient, par exemple de Stargate SG1 où les héros se servent de trous noirs pour contrer l’offensive de leurs ennemis ou de la série Sliders dont des analogues de trous noirs permettent aux acteurs de glisser d’univers parallèles en univers parallèles. Mais, au delà du simple folklore, on peut s’interroger sur ce que recouvre ces objets astronomiques… s’ils existent vraiment ! En effet, leur réalité a été longtemps discutée et, en dépit d’avancées récentes, certains scientifiques (mais de moins en moins) en doutent encore. Essayons d’y voir plus clair (sans jeu de mots).

 

 

 

Bref retour en arrière

 

     L’idée d’astres si massifs que même la lumière ne pourrait pas s’en échapper vient de loin, du XVIIIème siècle en fait, où, à la suite des travaux de Newton, John Michell (en 1783) et Pierre-Simon de Laplace (en 1796) en formulèrent conjointement la théorie. Oui, mais à cette époque, on ne connaissait pas la vitesse de la lumière et on ne pouvait en conséquence que supposer l’existence d’objets suffisamment massifs pour la retenir. Il s’agissait donc tout au plus d’une curiosité théorique comme la Science aime parfois en inventer et on s’empressa d’oublier ces idées étranges.

 
     C’est avec Einstein et sa
théorie de la Relativité générale que la notion de trou noir reprit du service. Depuis 1915, date de la formulation de la théorie, on sait que l’espace n’est pas uniformément plat et que tout objet peut plus ou moins le courber en fonction de sa propre masse. Tout objet certes, mais pour que cela soit notable, encore faut-il que cette masse soit suffisante, comme celle d’une étoile par exemple. Cette courbure plus ou moins prononcée de l’espace dévie forcément les rayons lumineux ce qui fut démontré dès 1920 (voir sujet : théorie de la relativité générale). Plus la masse d’un corps est importante, plus cette courbure est prononcée à la façon d’une sorte d’entonnoir (le puits gravitationnel) et plus la lumière sera déviée. Imaginons à présent un objet si massif que l’entonnoir se trouve « sans fond » : la lumière ne pourrait en ressortir et on se trouverait face à un « trou noir ». Problème : si la lumière ne peut s’échapper d’un trou noir, comment le voir ? Jusque dans les années 1960, la question resta sans réponse… et l’existence des trous noirs hypothétique. Une autre question vient aussi à l’esprit : d’où pourraient-ils venir, ces étranges objets ?

 

 

 

Origine des trous noirs

 

     Nous avons déjà évoqué (voir sujet : mort d’une étoile) les différents devenirs des étoiles, une évolution qui dépend essentiellement de leurs masses. Lorsque tout le combustible d’une étoile a été brulé, celle-ci évolue vers un astre extrêmement massif. Si la masse d’une étoile dépasse quarante fois la masse solaire (MS), son noyau dégénéré peut dépasser les trois MS. Dans ce cas, les forces de répulsion des composants atomiques dégénérés (neutrons et protons) ne peuvent plus s'opposer à la compression due aux forces gravitationnelles et la matière s’écrase sur elle-même sans que plus rien ne s’y oppose : on aboutit alors à la formation d’un trou noir. Il arrive même que cette éventualité se produise à partir d’une étoile à neutrons (l’évolution classique d’une étoile un peu moins massive) si celle-ci « capte » de la matière depuis une compagne proche comme cela peut se produire dans un système d’étoiles binaires serré (voir sujet : étoiles doubles et systèmes multiples). En pareil cas, l’accrétion de matière supplémentaire augmente la taille du résidu d’étoile jusqu’à dépasser un seuil critique à partir duquel se forme un trou noir.

 
     Selon leurs masses et leurs propriétés, il existe théoriquement différents types de trous noirs : les trous noirs supermassifs, les trous noirs stellaires (de quelques MS) et même des « micro trous noirs » mais nous ne nous intéresserons aujourd’hui qu’au premier type de ces trous noirs, les supermassifs.

 

 

 

Comment peut-on observer un trou noir ?

 

     On ne le peut pas puisque, par définition, il s’agit d’un objet invisible, la lumière ne pouvant s’en échapper ! C’est d’ailleurs la raison pour laquelle l’existence d’un tel phénomène a été longtemps tenue pour exclusivement théorique.

 
     On a déjà vu que l’espace est déformé par un corps massif : cela n’est pas perceptible pour un astre comme la Terre, de taille modeste par rapport à une étoile, mais est déjà notable pour le Soleil (voir sujet :
théorie de la relativité générale). Un trou noir, par son incroyable masse, doit donc considérablement déformer l’espace autour de lui… et par conséquent ralentir les distances et le temps. Une minute près d’un trou noir sera donc plus longue qu’une minute sur Terre…

 
     Un trou noir est un objet que l’on peut comparer à une barrière, une membrane à sens unique qui divise l’Univers en deux : d’un côté le monde extérieur (l’Univers que nous voyons et dans lequel nous vivons) et de l’autre un monde intérieur dont rien ne peut revenir. Cette limite du trou noir entre ces deux mondes est appelé «
l’horizon des évènements ».

 
     Un trou noir, toutefois, n’est pas qu’un corps passif puisqu’il échange des informations avec son monde extérieur en « captant » de la matière : il prélève de l’énergie mais peut également, par sa seule présence, en produire sur son environnement immédiat. Il existe donc des signes indirects de sa présence et c’est cela
que l’on a pu réussir à mettre en évidence à partir de la deuxième moitié du siècle dernier. Dès 1960, en effet, on a décelé des radio sources et des quasars (voir glossaire) qui ont accrédité l’idée que des objets supermassifs et impénétrables à la lumière pouvaient se situer au centre des galaxies. Quelques années plus tard, des satellites artificiels plus performants (pouvant déceler les rayonnements de haute énergie) ont mis en évidence des sources X en provenance de systèmes binaires dont l’une des composantes, invisible et très massive, émettait un flux gigantesque de rayons X : il ne pouvait provenir que de l’échange de matière entre l’étoile visible et sa compagne invisible, un trou noir.

 
     Que se passe-t-il à l’intérieur d’un trou noir ? Le centre du trou noir est appelé «
singularité », un endroit où la courbure de l’espace et le champ gravitationnel deviennent infinis mais on ne sait pas vraiment ce que cela veut dire pour la bonne raison qu’en pareil cas la théorie de la relativité générale ne peut s’appliquer (dans le cas, comme ici, d’une courbure infinie de l’espace, les phénomènes sont de nature quantique… et il n’existe pas, comme on l’a vu dans un sujet précédent, de théorie gravitationnelle quantique). Nous abordons là des domaines inconnus et forcément encore bien mystérieux.

 
       L’existence des trous noirs est à présent certaine mais comment se distribuent-ils dans l’Univers ?

 

 

 

Où trouve-t-on des trous noirs ?

 

     Les trous noirs supermassifs se trouvent au centre des galaxies et ils peuvent « peser » de quelques millions à plusieurs milliards de MS. Du fait de cette présence considérable, on peut parfois distinguer indirectement leur existence par des jets de matière qui s’échauffent à leur contact et, comme nous venons de le dire, par l’émission de puissantes sources de rayons X. Du coup, le centre d’une galaxie peut devenir plus brillant que ce qui serait expliqué par la seule superposition des étoiles qui la compose : c’est cela que l’on appelle un noyau actif de galaxie et on estime qu’environ 5% des galaxies visibles sont de cette nature. Chaque galaxie possède donc probablement un trou noir plus ou moins important : la Voie lactée, notre galaxie, n’échappe pas à cette règle comme en témoigne la course plus rapide des étoiles proches de son centre.


     La présence de trous noirs supermassifs explique l’existence d’objets astronomiques particuliers comme les quasars (presqu’une étoile ou quasi-star en anglais) qui sont des galaxies lointaines particulièrement actives en raison de leur grande activité lumineuse et magnétique, certainement en rapport avec la présence en leur centre de trous noirs hyperactifs. On évoque aussi les blazars (voir glossaire), voisins des quasars (et qui s’en distinguent par la grande variabilité de leurs émissions) mais également les radiogalaxies. En réalité, tous ces objets sont sans doute les différentes formes des galaxies à noyaux actifs.
 

 


Vie des trous noirs supermassifs

 

     On vient de voir que les galaxies à noyaux actifs sont celles dont les trous noirs centraux sont en pleine activité : ils avalent continuellement de la matière d’où leur luminosité intense. Question : de tels trous noirs supermassifs finiront-ils par engloutir toutes les étoiles de leurs galaxies ? Eh bien non car il existe une sorte « d’autorégulation » : à force d’avaler tout qui les entoure, il finit pas se créer autour d’eux une zone de « no man’s land » vide de matière et le trou noir se calme… Il n’empêche : lorsqu’il est en pleine activité, il se crée à sa proximité d’énormes déplacements de gaz qui s’échauffe jusqu’à entraîner la formation de myriades de nouvelles étoiles. C’est également le cas lors de collision entre deux galaxies avec la création de gigantesques « effets de marées » gravitationnels qui compriment les gaz vers les centres galactiques occupés par leurs trous noirs respectifs d’où, là aussi, des pépinières de jeunes étoiles ; le phénomène conduit à une extraordinaire augmentation des disques d’accrétion de matière autour des trous noirs : la galaxie résultante devient si brillante qu’on l’appelle un quasar, un objet à la luminosité équivalente à celle d’une étoile proche de nous alors qu’il est situé aux confins de l’Univers. On se trouve ici en présence des phénomènes les plus énergétiques de l’Univers dont on peut imaginer ni l’étendue, ni la puissance tant nous sommes minuscules par rapport à eux…

     Et notre Galaxie dans tout ça ? La Voie lactée possède bien un trou noir massif en son centre mais il est plutôt calme (ce qui n’a peut-être pas toujours
été le cas). Pour en savoir plus sur Sagittarius, le trou noir de notre galaxie, se reporter au sujet dédié ICI. Pourrait-il se réactiver et, ainsi, augmenter la lumière de nos nuits ? Cela se produira très certainement dans environ deux milliards d’années lorsque notre Galaxie se heurtera à notre voisine, la grande galaxie d’Andromède. Il n’y aura pas de chocs entre les étoiles composant ces deux monstres tant il y a du vide en eux mais les forces gravitationnelles entraineront l’élévation de chaleur des gaz intersidéraux – d’où la formation de millions de nouvelles étoiles – et lorsque les trous noirs des deux galaxies fusionneront après des dizaines de milliers d’années d’interpénétration galactique, la résultante sera gigantesque. Un immense trou noir pour une immense nouvelle galaxie. Nous ne serons évidemment pas là pour le voir. J’allais presque dire : dommage…

 

 

 

 

 

Images

* photo 2 : image simulée d'un trou noir (sources : www.science-et-vie.net/)
* photo 3 : l’image en fausses couleurs obtenue par le télescope spatial Spitzer de la NASA montre une galaxie lointaine (en jaune) qui abrite un quasar, un trou noir supermassif entouré d’un anneau (ou tore) de gaz et de poussières (sources : www.nasa.gov/)
* photo 4 : grande galaxie d'Andromède (sources : http://www.noao.edu/)

(Pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

Glossaire (in Wikipedia France)

 
* quasar : un quasar (pour source de rayonnement quasi-stellaire, quasi-stellar radio source en anglais) est une source d’énergie électromagnétique, incluant la lumière visible et les ondes radios. Les quasars visibles de la Terre montrent tous un décalage vers le rouge très élevé. Le consensus scientifique dit qu’un décalage vers le rouge élevé est le résultat de la loi de Hubble, c’est-à-dire que les quasars sont très éloignés. Pour être observables à cette distance, l’énergie que libèrent les quasars doit se réduire à un phénomène astrophysique connu, principalement les supernovae et les sursauts gamma (qui ont une vie relativement courte). Ils peuvent libérer autant d’énergie que des centaines de galaxies combinées. L’énergie lumineuse libérée est équivalente à celle qui serait libérée par 1012 Soleils.
     Avec les télescopes optiques, la plupart des quasars ressemblent à de petits points lumineux, bien que certains soient vus comme étant les centres de galaxies actives (couramment connus sous l'abréviation AGN, pour Active Galaxy Nucleus). 
     Certains quasars montrent de rapides changements de luminosité, ce qui implique qu’ils sont assez petits (un objet ne peut pas changer plus vite que le temps qu’il faut à la lumière pour voyager d’un bout à l'autre). Actuellement, le quasar le plus lointain observé se situe à 13 milliards d'années-lumière de la terre.
     On pense que les quasars gagnent en puissance par l’accrétion de matière autour des trous noirs supermassifs qui se trouvent dans le noyau de ces galaxies, faisant des « versions lumineuses » de ces objets connus comme étant des galaxies actives. Aucun autre mécanisme ne parait capable d’expliquer l’immense énergie libérée et leur rapide variabilité.

 
* blazar : les blazars sont des galaxies très actives et compactes, souvent très éloignées, ressemblant à des quasars. Leur principale caractéristique est que leur luminosité peut varier d'un facteur de 1 à 100 d'un jour à l'autre.
     Ils sont parmi les objets les plus puissants et violents de l'Univers et font partie, avec les quasars et les radiogalaxies, de la famille des galaxies actives, émettant une grande quantité de rayonnement lumineux et d'ondes radio depuis une région en leur centre pas plus grande que notre système solaire, vraisemblablement à cause d'un trou noir supermassif présent en leur centre, d'une masse de l'ordre du milliard de masses solaires et d'énergie d'ordre de mille milliard de fois celle de notre Soleil.

 

 

Brêve : chaque galaxie a bien son trou noir

 

   Une équipe d'astronomes de l'université de Durham (Royaume-Uni) a découvert cinq trous noirs cachés derrière des nuages de gaz et de poussières. Seuls les rayons X de haute énergie que produisent ces gouffres gravitationnels massifs comme des millions de Soleils pouvaient les trahir. Cette découverte permet de confirmer qu'un trou noir supermassif nicherait bien au coeur de chaque galaxie et d'évaluer pour la première fois leur population totale. "Il est probable que même dans les galaxies où l'on ne détecte rien, il y ait un trou noir supermassif, précise George lansburry, qui a mené l'étude. Certains doivent simplement être trop calmes pour produire des rayons X. Les monstres seraient ainsi des millions, rien que dans l'Univers proche de notre Voie lactée.

(Science & Vie, 1176, septembre 2015)

 

 

 

Mots-clés : Stargate SG1 - sliders - John Michell - Pierre-Simon de Laplace - relativité générale - étoile supergéante - étoile à neutrons - étoiles binaires - horizon des événements - radiosources - quasars - singularité - noyau galactique actif - blazars - radiogalaxies - galaxie d'Andromède

(les mots en gris renvoient à des sites d'informations complémentaires)

 

 

 

 Sujets apparentés sur le blog

 

1. mort d'une étoile

2. théorie de la relativité générale

3. mécanique quantique

4. les galaxies

5. pulsars et quasars

6. juste après le Big bang

7. novas et supernovas

8. Sagittarius, le trou noir central de notre galaxie

9. la grande galaxie d'Andromède

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

 

l'actualité du blog se trouve sur FACEBOOK

 

 

Mise à jour : 24 février 2023

Voir les commentaires

Publié le par Céphéides

Voici quelques courts articles parus sur le site Facebook du blog

 

 

 

LA NÉBULEUSE DU CRAYON

 

NGC 2736
nébuleuse du Crayon (NGC 2736)



     Il y a 11 000 ans sur Terre, en regard de la constellation des Voiles, une lueur vive dans le ciel indiquait la transformation d’une étoile géante en supernova, une lueur qui avait mis 800 ans pour parvenir jusqu’à notre planète.


     De nos jours, l’onde de choc de la supernova continue à se répandre dans le cosmos. Se mouvant à la vitesse d’environ 500 000 km/h, elle ralentit progressivement sa course au fur et à mesure de son expansion et de sa rencontre avec le gaz interstellaire environnant (au début elle se déplaçait à des millions de km par heure).

     D’une taille de plus de 100 années-lumière, le rémanent de la supernova se disperse donc graduellement et une petite partie de celui-ci se présente sous la forme de fibrilles éthérées rouges (hydrogène ionisé) ou bleu-vert (oxygène) : on lui donne le nom de nébuleuse du Crayon (NGC 2736). Il s’agit en fait d’ondulations serpentant dans une couche de gaz luminescent observée par la tranche. La plus grande part du rémanent de la supernova des Voiles reste cachée par de la poussière.


Image : la nébuleuse du Crayon (Crédit : Howard Hedlund et Dave Jurasevich, Las Campanas Obs.).
ASD de NASA / GSFC & Michigan Tech. U

 

 

 

L’AMAS STELLAIRE TRUMPLER 14

 

amas globulaire ouvert
amas stellaire Trumpler 14



     Le conglomérat d’étoiles de la photo ci-dessus est appelé amas de Trumpler 14 et il est situé à 9 000 années-lumière de nous, près de la constellation de la Carène. Cet amas globulaire ouvert est un des plus grands rassemblements de nouvelles étoiles de toute notre galaxie, regroupant plus de 4 000 d’entre elles. Ces étoiles sont très chaudes et très bleues et elles sont toutes nées ensemble il y a moins de 500 000 ans. Elles vivront peu de temps (quelques millions d’années) car trop massives, (au moins dix masses solaires) avant d’exploser en supernovas. Du coup les nuages de matière qui les entourent vont se trouver déstabilisés et s’effondreront sur eux-mêmes, donnant naissance à une nouvelle génération stellaire, des étoiles en majorité plus petites et plus rouges.

     Sur la photographie, on peut également remarquer deux objets étranges : :

     • à la gauche du centre, on distingue une tache noire dont on suppose qu’il s’agit d’un protosystème planétaire qui sera probablement détruit par l’énergie des vents stellaires produite par l’explosion des étoiles massives et


     • en bas, à gauche de l’image, on peut voir un arc de cercle. L’hypothèse la plus probable est qu’il s’agit d’une onde de choc ultrarapide générée par une étoile éjectée d’un autre système stellaire il y a une centaine de milliers d’années.

Crédits-photo : Jay Norris, ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

RS PUPPI, UN PHARE DANS L’ESPACE

 

céphéide
RS Puppi


 


     La brillante étoile qui occupe le centre de la photographie ci-dessus est RS Puppi, une des étoiles variables les plus brillantes de notre ciel, c'est-à-dire une étoile qui « pulse » de façon parfaitement régulière. En effet, avec une période de 41,4 jours, l’étoile voit son rayon, sa luminosité et sa température augmenter puis diminuer jusqu’à retrouver ses constantes de départ à chaque cycle selon un mécanisme à présent bien compris. La céphéide RS Puppi est une supergéante jaune 15 000 fois plus lumineuse que le Soleil (pour une masse de 10 fois celle de notre étoile).


     Les caractéristiques des étoiles de type céphéides ont permis de « baliser » le cosmos puisque la régularité de leurs pulsations permet de calculer les distances auxquelles elles se trouvent. Le télescope spatial Hubble en a même mis en évidence dans d’autres galaxies que la Voie lactée.


     Dans le cas de RS Puppi, les scientifiques ont observé les changements de luminosité de la nébuleuse qui l’entoure : il existe un décalage temporel dans cette progression (écho lumineux) et connaissant la vitesse de la lumière et la taille angulaire de la nébuleuse, ils ont pu en déduire l’éloignement de l’étoile avec beaucoup de précision. RS Puppi est située à 6 500 années-lumière de nous (avec une très faible marge d’erreur de moins de 90 années-lumière).

     C’est de cette façon que les scientifiques, grâce aux céphéides, ont pu cartographier l’univers qui nous entoure avec une précision remarquable.



Crédits photo : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP) / ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

LA GALAXIE DU SOMBRERO

 

M 104 / NGC 4594
galaxie du Sombrero



     Découverte par Charles Messier, cette galaxie (également identifiée comme M104 ou NGC 4594) est très célèbre en raison de sa forme : elle est vue par la tranche et sa silhouette rappelle celle d’un chapeau, d’où son nom.


     Située à 28 millions d’années-lumière de nous, elle a un diamètre de 50 000 années-lumière et possède en son centre, vaste bulbe d’étoiles, un trou noir hypermassif. Elle abrite une bande de poussière sombre qui donne l’impression de la couper en deux. Le télescope spatial Spitzer démontra en 2012 qu’il s’agit d’une galaxie de type elliptique et non spiral comme on le pensait jusque là (et comme cela est encore écrit dans bien des sources).

     Elle occupe une place à part dans l’histoire de l’astronomie. En effet, en 1914, un astronome américain, Vesto Slipher, découvrit que son spectre est décalé vers le rouge et qu’elle s’éloigne de nous à la vitesse de 1000 km/h. C’était la première fois que ce qu’on prenait jusque là pour une nébuleuse était soupçonné d’être extérieur à la Voie lactée, une hypothèse qui fut confirmée quelques années plus tard par l’astronome américain Hubble.


     La galaxie du sombrero est une des plus grandes galaxies de l’amas galactique de la Vierge. Il est difficile de la voir depuis les latitudes européennes mais elle est superbe vue d’Afrique.

 

Sources : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
ASD de NASA / GSFC & Michigan Tech. U. 

 

 

LENTILLES GRAVITATIONNELLES

 

amas de galaxies Abell 370
amas galactique Abell 370 et lentille gravitationnelle



     Situé en regard de la constellation de la Baleine, Abell 370 est un immense amas de galaxies situé très loin de nous, à plus de 4 milliards d’années-lumière. C’est également le plus lointain amas de ce genre inscrit par l’astronome américain Georges Abell dans son catalogue spécialisé dans ce type d’objets.


     Or, en regardant Abell 370, les scientifiques avaient observé d’étranges arcs sans jamais pouvoir les expliquer. Plus récemment, ces images bizarres ont été reconnues comme traduisant la présence d’une lentille gravitationnelle : Abell 370 lui-même.


     En effet, le groupe en question contient tellement de galaxies que leur masse détourne la lumière (prouvant au passage que la théorie d’Einstein sur la courbure de l’espace est parfaitement valide). Du coup, l’image des galaxies plus lointaines qu’Abell 370 passent par des chemins différents, donnant ces étranges images d’arc : on parle alors des artéfacts d’une lentille gravitationnelle (sur le cliché, l’amas galactique Abell 370 est au premier plan).


     Les objets jaunes de l’image appartiennent au groupe Abell 370 et les arcs de cercle sont donc les images déformées de galaxies parfaitement normales mais situées très loin au-delà. Sans la présence de la lentille gravitationnelle, nous ne pourrions pas connaître l’existence de ces lointaines galaxies…
 

Photo : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
ASD de NASA / GSFC & Michigan Tech. U. 

 

 

 

LES ÉTOILES LES PLUS BRILLANTES

 

principales étoiles visibles à l'oeil nu
étoiles les plus brillantes d'un ciel nocturne

 


     Contrairement à la légende, par une nuit sans Lune et loin des nuisances lumineuses de la civilisation, ce ne sont pas des millions d’étoiles que l’on peut alors apercevoir mais tout au plus 3000 et cela uniquement si l’on possède une excellente vue.


     Afin de clarifier une situation confuse, l’Union Astronomique Internationale (UAI) a récemment décidé de normaliser les noms d’étoiles en tenant compte au maximum des antécédents historiques et culturels. Dans l’image ci-après, on trouvera la liste de noms retenue par l’UAI, par ordre décroissant et en vraies couleurs, pour les 25 plus brillantes étoiles vues de la Terre.


     Ce sont souvent les noms d'usage les plus répandus qui ont été choisis. On trouve ainsi : Sirius (du latin : « celle qui dessèche »), Véga (« tomber » en arabe), Aldébaran (« la suivante » en arabe), Antares (du grec "comme Mars"), Altaïr (« l’aigle en vol » en arabe), Deneb (de l’arabe « la queue de la poule », une « poule » qui chez nous est la constellation du Cygne), etc. À noter l’appellation Rigil Kentauris pour Alpha du Centaure et Mimosa pour Bêta de la Croix du Sud.

On trouvera de plus amples informations sur le blog de céphéides principal en cliquant ici : https://cepheides.fr : le nom des étoiles

Sources : ASD de NASA / GSFC & Michigan Tech. U. 

 

 

 

LA SUPERBULLE HENIZE 70

 

superbulle dans le Grand Nuage de Magellan
superbulle Henize 70



     En astronomie on appelle "superbulle" une cavité très chaude (plusieurs millions de degrés) formée par les explosions d'étoiles massives. Ces étoiles ont toutes plus de huit masses solaires (jusqu'à 100) et sont d'un spectre particulier (association de types spectraux O et B). Ces bulles s'étendent sur des centaines d'années-lumière et les supernovæ qui explosent en leur sein ne donnent pas de rémanents comme c'est classiquement le cas partout ailleurs. Elles provoquent en revanche de puissants vents stellaires dont l'énergie se situe forcément à l'intérieur de la bulle.


     Dans la petite galaxie satellite de la Voie lactée, le Grand Nuage de Magellan, la nébuleuse Henize 70 (photo) est en réalité une bulle de gaz interstellaire d'une taille déjà conséquente (300 années-lumière) et destinée à poursuivre son expansion. En effet, avec un intérieur rempli de gaz chaud se dilatant, une superbulle peut en définitive balayer toute une galaxie réalisant une autre forme d'ensemencement galactique.


     Détail intéressant : le système solaire lui-même repose non loin du centre d'une ancienne superbulle appelée bulle locale.


Crédit Photo : Josep M. Drudis
ASD / NASA / GSFC & Michigan Tech. 

 

 

 

SHARPLESS 308, ÉTOILE DE WOLF-RAYET

 

étoile de Wolf-Rayet
Sharpless 308



     À 5200 années-lumière de nous, en regard de la constellation du Grand Chien, s’étend une immense bulle cosmique d’une dimension de plus de six années-lumière (soit un peu plus qu’une Pleine Lune). Contrairement à la superbulle décrite plus haut, celle-ci est l’œuvre d'une seule étoile dite "de Wolf-Rayet".


     Les étoiles de Wolf-Rayet sont des étoiles géantes sur le point de se transformer en supernovas et qui éjectent énormément de substance en générant de fantastiques vents solaires. Ce stade ne dure pas très longtemps : quelques centaines de milliers d’années, un million au plus.


     L’étoile de Wolf-Rayet responsable de cette bulle cosmique est celle qui, dans la photo ci-dessus, se trouve presque au centre de la nébuleuse soufflée par ses vents violents. Le début de ce gigantesque cataclysme s’est produit il y a environ 70 000 ans. La bulle baptisée SH 2-308 est dominée par la couleur bleue traduisant la présence d’oxygène ionisé. Elle est également connue sous le nom de nébuleuse du Dauphin

 

Crédit Photo : Laubing
ASD/NASA / GSFC & Michigan Tech. U.

 

 

 

RÉMANENT DE SUPERNOVA G 292.0-1.8

 

 supernova  G 292.0-1.8
rémanent de la supernova G 292.0-1.8



     Pour clore ce petit panorama de bulles spatiales, voici l'image du rémanent d’une supernova dont l’explosion fut perçue sur Terre il y a 1600 ans. Puisque cet objet est situé à environ 20 000 années-lumière de nous, en regard de la constellation du Centaure, le phénomène s’est donc produit il y a un peu moins de 22 000 ans.


     C’est l’observatoire spatial Chandra qui a pris cette photo du rémanent de la supernova (c'est-à-dire les débris de son enveloppe extérieure) tandis que le noyau de l'étoile s’est transformé en étoile à neutrons en rotation rapide, autrement dit en pulsar.


     L’étoile géante a transformé son hydrogène et son hélium en éléments lourds qu’elle dissémine donc par son rémanent, participant ainsi à l’enrichissement des nouvelles générations stellaires. La bulle de ce rémanent s’étend sur 36 années-lumière. La dominante bleue de l’image correspond à des filaments de gaz (oxygène, néon et magnésium notamment) dont la chaleur atteint plusieurs millions de degrés.

     Cette image a été publiée pour célébrer le vingtième anniversaire du télescope spatial Chandra mis en orbite par la navette spatiale Columbia le 23 juillet 1999.


Crédits Photo : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
ASD de NASA / GSFC & Michigan Tech. 

 

 

 

LES JUMELLES SIAMOISES

 

NGC 4564, NGC 4567 et NGC 4568
jumelles galactiques de l'amas de la Vierge



     Sur la droite de l’image ci-dessus, on peut voir la galaxie elliptique solitaire baptisée NGC 4564 mais sur la gauche, presque interpénétrées, deux galaxies spirales NGC 4567 et NGC 4568. Toutes trois font partie du grand amas galactique de la Vierge.

     C’est la paire de galaxies spirales qui attire l’œil et cet ensemble est appelé le Papillon galactique (ou Jumelles siamoises). Ces deux objets sont situés à 52 millions d’années-lumière et leurs centres respectifs représentés par leurs noyaux brillants ne sont séparés que par 20 000 années-lumière.


     Pour celui qui sait les énormes distorsions que causent les marées gravitationnelles lorsque deux galaxies sont aussi proches, ces deux objets ne paraissent pas particulièrement déformés. On peut distinguer leurs classiques bras spiraux, leurs nuages de poussière et leurs amas stellaires. Puisque les deux galaxies sont entrées en collision par leurs nuages moléculaires, il est certain que se forment à leurs points de contact des myriades d’étoiles massives.


     Comme la Voie lactée et sa voisine Andromède dans cinq milliards d’années, les deux jumelles finiront par former une super galaxie géante.


Crédit image : CHART32 Team ; traitement : Johannes Schedler Bonnell (UMCP)
Représentant technique de la Nasa : Jay Norris
ASD de NASA / GSFC & Michigan Tech. U

 

 

 

LA GALAXIE AUX MILLE RUBIS

 

NGC 5236
galaxie M83



     La galaxie cataloguée M 83 (image ci-dessus) est appelée la Roue De Feu Australe et elle est située à 12 millions d’années-lumière de nous, en regard du sud-est de la plus longue des 88 constellations, celle de l’Hydre. Possédant un diamètre de 40 000 années-lumière, il s’agit d’une brillante et belle galaxie spirale.

 

     Son nom de Roue de Feu s’explique par les amas bleutés de nouvelles étoiles qui peuplent ses bras spiraux. Ces étoiles sont très récentes et les scientifiques estiment leur âge entre quelques millions et quelques dizaines de millions d’années.

     Toutefois, on peut également distinguer d’autres régions de formation stellaire, rouges celles-ci, qui sont en fait des nébuleuses gazeuses où la création de nouvelles étoiles débute à peine. Le rayonnement rouge est dû au gaz ionisé par les encore rares nouvelles étoiles très chaudes. Ce sont ces endroits qui ont également valu à M 83 le surnom de « galaxie aux mille rubis ».


Étudié aux rayons X le bulbe central de M 83 est brillant car il regorge de trous noirs et d’étoiles à neutrons témoignant des flambées d’étoiles précédentes, le tout sur fond d’étoiles jaunes plus âgées.

   Ces régions de couleurs différentes donnent à cette superbe galaxie une réelle impression de mouvement.


Sources image : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA / GSFC & Michigan Tech. U

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

 

 

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie

Voici quelques courts articles parus sur le site Facebook du blog

 

L'AMAS DES PLÉIADES

 

amas des Pléiades

 

     Les Pléiades (M45 dans la classification de Messier) sont connues depuis la plus haute antiquité, le poète grec Hésiode les ayant déjà évoquées en 700 avant J-C ! Cet ensemble d'étoiles est connu parce que relativement proche de nous (environ 400 années-lumière) et visible, même au cœur des grandes métropoles de notre époque tellement parasitées par les lumières artificielles.

     Il s'agit d'un amas ouvert d'environ 3000 étoiles, situé dans la constellation du Taureau, dont on peut voir une dizaine d'éléments à l’œil nu selon la pureté du ciel. Il a été également baptisé "les sept sœurs" en référence aux 7 filles d’Atlas et Pléioné de la mythologie grecque : les étoiles les plus visibles portent d'ailleurs les noms de ces antiques déesses.

     Rappelons qu'un amas ouvert est un conglomérat d'étoiles nées ensemble et liées entre elles par des forces gravitationnelles assez faibles qui s'estompent avec le temps, rendant ainsi les étoiles indépendantes. Par opposition, les amas fermés sont des ensembles d'étoiles situés en dehors de la galaxie et, liés par une forte gravitation, ils tournent autour d'elle, au risque d'être à chaque passage "amputé" de quelques étoiles par l'attraction galactique (nous avons évoqué le dernier passage de l'un d'entre eux, Palomar 13, il y a quelques mois).

     Long d'environ 13 années-lumière ce qui est peu, l'amas des Pléiades est visible facilement parce que proche et, dans le ciel nocturne, il s'étend sur environ 2°, soit quatre fois le diamètre apparent de la Lune. On y a repéré des naines brunes, c'est à dire des étoiles trop petites pour s'être "allumées" (ce qui est logique puisqu'un amas ouvert est à l'origine une pouponnière d'étoiles).

     Sur la photo, on distingue les étoiles les plus brillantes de l'amas, entourées de nébuleuses par réflexion (le nuage de poussières dans l'amas). Ces aigrettes de diffraction sont générées par l'instrument d'observation mais, dans le cas présent, je trouve que cela renforce la beauté de l'image...

 

Pour en savoir plus : "amas globulaires et traînards bleus " : 

Image : l'amas ouvert des Pléiades (sources : Image Crédit & Copyright : Robert Gendler ; ASD de NASA / GSFC & Michigan Tech. U.)

 

 

 

LA NÉBULEUSE DE LA TÊTE DE CHEVAL BLEU

 

nébuleuse de la tête de cheval bleu

 

     Précisons d'emblée que cette nébuleuse dite "de la tête de cheval" n'est pas la plus célèbre connue sous un tel nom : la plus fameuse est en effet située dans la constellation d'Orion et a été maintes fois photographiée et étudiée. C'est la raison pour laquelle on précise ici "tête de cheval bleu".

    Sur l'image ci-après, on voit effectivement un nuage de poussière bleu rappelant une tête de cheval, d'où son nom. Identifiée sous le code IC 4592, cette nébuleuse est peu connue puisque difficile à photographier (il faut un long temps de pause) car elle est très peu lumineuse. Elle est située à plus de 400 années-lumière (436 exactement) de nous et est très étendue : il s'agit de ce que l'on appelle une "nébuleuse par réflexion".

     Qu'est-ce qu'une nébuleuse par réflexion (nous en avons déjà évoquées quelques unes) ? Eh bien, il s'agit de nuages de poussière qui réfléchissent la lumière des étoiles se trouvant près d'eux. Elles s'opposent aux nébuleuses par émission où les étoiles qui habitent celles-ci sont suffisamment chaudes et proches pour ioniser les gaz et poussière de la nébuleuse qui prennent alors des couleurs diverses selon leur composition.

    La nébuleuse de la tête de cheval bleue réfléchit principalement la lumière d'une étoile très brillante de la constellation du Scorpion, Nu Scorpii. Cette étoile est une supergéante bleue dont le nom commun est Jabbah (ou Jabah). En réalité, en approfondissant l'observation, on comprend qu’il s'agit d'un système stellaire quintuple (et peut-être même sextuple) associant deux groupes d'étoiles très proches l'un de l'autre et dominés par deux supergéantes bleues de type B2.

    On peut voir l'étoile Jabbah à l'emplacement supposé de l'œil de la tête de cheval bleue tandis qu'une deuxième nébuleuse par réflexion est visible à l'emplacement de l'oreille du cheval (IC 4601), juste après les deux autres étoiles bleues. À noter : pour cette photo, le nord est en bas et le sud en haut.

 

Pour en savoir plus : "étoiles doubles et systèmes multiples" 

Image : la nébuleuse de la tête de cheval bleue (crédits : Scott Rosen / ASD de NASA / GSFC & Michigan Tech. U).

 

 

 

LES DENTELLES DU CYGNE

 

dentelles du Cygne

 

     Les dentelles du cygne (en anglais, Cygnus Loop) sont les restes d'une étoile ayant explosé il y a quelques milliers d'années dans la constellation du Cygne ; l'enveloppe externe de cette étoile s'est dispersée dans l'espace et on parle alors de rémanent de ce qui fut une supernova. C'est le télescope spatial Hubble qui a pris ce cliché il y a maintenant plus de 20 ans...

     Le nuage de gaz ionisé est ici vu par la tranche et il se déplace à la vitesse d'environ 150 km/sec. mais il ne s'agit que d'une petite partie de l'ensemble et sa luminosité est le résultat de l'excitation du gaz qui la compose. L'ensemble "des dentelles" est composé des grandes et petites dentelles ainsi que du triangle de Pickering que nous avons déjà évoqué il y a quelques mois.

     La photo qui illustre ce sujet est très particulière. En effet, s'il existe de nombreux clichés des "dentelles", celui-ci a servi aux scientifiques pour estimer à nouveau la distance et l'âge de cet objet astronomique : on sait à présent qu'il n'est situé qu' à 1440 années-lumière de nous et que son âge est d'un peu moins de 10 000 ans.

 

Image : les dentelles du Cygne (crédits : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP) ; ASD de NASA / GSFC & Michigan Tech. U.)

 

 

 

LA COULEUR DES ÉTOILES

 

Antarès et son environnement

 

     Bien qu'apparaissant toutes blanc-jaune et clignotantes aux yeux de l'observateur amateur depuis la Terre, les étoiles sont en réalité de couleurs différentes : bleu, jaune, blanc, rouge, vert, etc. Prenons l'exemple de la supergéante rouge Antarès, de la constellation du Scorpion, (en fait une étoile double associant la supergéante rouge à une géante bleue vivant dans l'ombre de sa grande voisine). C'est une étoile si gigantesque que, à côté d'elle, le Soleil aurait l'air d'un nain. Cette étoile en fin de vie, dont le diamètre est 888 fois celui de notre étoile, est rouge car son enveloppe externe se dilate et donc se refroidit.

     Antarès, une des étoiles les plus brillantes du ciel, à partir du pôle inférieur de l’ensemble, illumine tous les nuages rouge-jaune situés en bas et à gauche de la photo ci-après. En revanche, les espaces tout à fait obscurs situés au centre et en haut de l'image sont des nuages de poussière éclairés par derrière qui, en arrêtant la lumière des étoiles situées encore plus loin, donnent cette impression d'encre de Chine.

    Dans la partie haute de la photo, on peut distinguer une nébuleuse par réflexion de couleur bleue au sein de laquelle resplendit l'étoile Rhô Ophiuchi (en fait un système quadruple de géantes bleues) située à 360 années-lumière de nous. Cette région est d'ailleurs une pouponnière d'étoiles.

    Revenons à Antarès. On aperçoit en bas et sur la droite de l'étoile un amas globulaire. Il s'agit de M 4, bien plus lointain puisque situé à 7195 années-lumière (contre 600 années-lumière pour Antarès) mais qui reste néanmoins l'amas globulaire le plus proche de la Terre.

    L'image de la NASA démontre s'il en était besoin la richesse des couleurs de l'Univers. Pourtant une partie de ces couleurs n'est pas accessible à l'œil humain, notamment dans l’infrarouge mais aussi en ultra-violet. L'Évolution n'a pas jugé nécessaire de sélectionner ces caractéristiques chez le grand primate qu'est l'Homme (qui n'en a sans doute guère besoin dans sa vie terrestre) mais devant un tel spectacle on peut vraiment le regretter.

 

Sur le blog : la couleur des étoiles 

Image :: Tom O'Donoghue (ASD de NASA / GSFC & Michigan Tech. U)

 

 

 

L'AVENIR (LOINTAIN) DU SOLEIL

 

nébuleuse de la calebasse

 

     Voici ci-dessus une intéressante photo de la nébuleuse de la Calebasse située à environ 5000 années-lumière de nous, dans la constellation de la Poupe : on y voit là la mort d'une étoile ressemblant à notre soleil, très vraisemblablement une naine jaune comme lui.

     Après avoir épuisé son carburant, l'hydrogène, qu'elle transformait en hélium, cette étoile est devenue une naine blanche pour sa partie centrale. En effet, jusque là les réactions nucléaires contrebalançaient ses pressions internes depuis des milliards d'années mais voilà que ce bel équilibre a été rompu : le centre de l'étoile s'est écrasé sur lui-même donnant naissance au cadavre d'étoile appelé naine blanche (de la taille d'une planète) qui mettra des milliards d'années à s'éteindre en naine noire tandis que son enveloppe externe a été expulsée dans l'espace à la vitesse d'un million de km/h pour donner la nébuleuse.

     Sur la photo, le centre de l'étoile mourante est caché par d'épais nuages de poussière et de gaz tandis que se développent les premiers stades de la nébuleuse planétaire. La vitesse de propagation du nuage de gaz est si forte qu'il existe un phénomène de ionisation de l'hydrogène et de l'azote (en bleu sur le cliché). Dans quelques centaines d'années, le nuage de gaz sera une classique nébuleuse bipolaire.

     Mais, dans environ 5 milliards d'années, à une époque où l'humanité et ses espoirs auront depuis bien longtemps disparu, le même phénomène arrivera au Soleil. Avant que des millions d'années plus tard encore ses restes soient peut-être en partie récupérés pour former une nouvelle étoile.

 

Sur le blog : "mort d'une étoile"

Crédits photo : NASA, ESA, Hubble, MAST; Remerciements: Judy Schmidt.

 

 

 

LA SUPERNOVA DE TYCHO BRAHE

 

supernova SN 1572

 

   Tycho Brahe, scientifique danois, fut au XVIème siècle l'astronome le plus célèbre. Parmi ses nombreuses observations, l'objet de la photo ci-après est le rémanent de la supernova observée par l'illustre savant le 11 novembre 1572.

    Depuis la plus haute antiquité, les tenants des croyances religieuses soutenaient qu'un objet céleste nouveau ne pouvait apparaître qu'entre la Terre et la Lune mais pas au delà, domaine de l'immuable (axiome aristotélicien). Brahe prouva qu'il s'agissait bien d'une étoile, donc située au delà de la Lune : la religion avait donc tort et ce fut probablement un des deux ou trois événements les plus importants de l'histoire de l'astronomie et, peut-être même, de l'Humanité.

   Cette supernova, baptisée SN 1572 est très certainement de type I (dite thermonucléaire), c'est à dire produite par l'explosion d'une naine blanche ayant progressivement absorbé la matière d'une étoile avec laquelle elle formait un système binaire. Extrêmement chaud, le nuage de gaz en dilatation présente des secousses dans sa vitesse d'expansion ce qui lui confère cette apparence boursoufflée.

 

sources : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP), ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

UNE GALAXIE BIEN ÉTRANGE

 

galaxie NGC 660

 

    En braquant son optique à plus de 20 millions d'années-lumière dans la direction de la constellation des Poissons, le télescope Gemini nord (situé sur un volcan endormi de Hawaï, à plus de 4200 m d'altitude) a repéré cette galaxie (baptisée NGC 660) avec son look bizarre.

   On appelle ce type de galaxie (en réalité, très rare), une "galaxie à anneau polaire" parce que, comme on peut le voir sur l'image ci-dessus, une grande partie des étoiles et de la poussière de cette galaxie forme un anneau perpendiculaire au plan galactique principal. Quelle peut bien en être la raison de cette configuration plutôt curieuse ?

   Eh bien ,l'hypothèse la plus vraisemblable est qu'il s'agit de la capture d'une autre galaxie par la principale : après démembrement de la plus petite galaxie par les "forces de marée" gravitationnelles générées par la plus grosse des deux galaxies, les débris ainsi formés (des milliards d'étoiles comme le Soleil) se sont mis à graviter en anneau autour de l'axe de la galaxie principale.

   On sait que, selon la théorie actuellement en vigueur, chaque galaxie est probablement entourée par un halo de matière noire (matière à la composition totalement inconnue dont on ne fait que soupçonner indirectement la présence) ; du coup, cette configuration galactique exceptionnelle va peut-être permettre d'étudier l'action de la matière noire sur l'anneau polaire et peut-être pourrons-nous en savoir plus sur cet élément mystérieux...

    Précisons enfin que l'anneau polaire de NGC 660 s'étend quand même sur plus de 50 000 années-lumière puisqu'il est plus grand que le disque galactique lui-même : à titre de comparaison, le disque de notre propre galaxie, la Voie lactée, mesure environ 70 000 années-lumière dans sa plus grande longueur.

 

Image : Gemini Observatory, AURA, Travis Rector (Univ. Alaska Anchorage) ; ASD de NASA / GSFC & Michigan Tech. U.

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

mise à jour : 24 mars 2023

Voir les commentaires

Publié le par Céphéides
Publié dans : #astronomie
étoile Wolf-Rayet WR 124

étoile Wolf-Rayet WR 124

  En 1876, à l’observatoire de Paris, deux astronomes français, Charles Wolf et Georges Rayet s’interrogèrent sur la nature de trois étoiles étranges situées en regard de la constellation du Cygne. Étranges car la spectrométrie (une technique encore balbutiante) révélait qu’elles étaient différentes de toutes les autres étoiles observées : leur spectre présentait des bandes étroites de couleur (spectre d’émission) au lieu de spectres continus de  presque toutes la gamme des couleurs (spectre d’absorption). Comment expliquer cette étrangeté ? Débutait ainsi une énigme qui allait occuper les scientifiques durant de nombreuses décennies. Récemment le télescope spatial James Webb nous en a appris un peu plus sur ces objets si particuliers.

 

 

Les étoiles Wolf-Rayet


      On sait aujourd’hui que les étoiles Wolf-Rayet sont en réalité les descendantes des étoiles de type spectral O ou B, c’est-è-dire les étoiles les plus massives existantes puisque leur masse est comprise entre 10 et plus de 200 masses solaires (la plus massive jamais observée, R136a1, située en regard de la constellation de la Dorade, atteint 315 fois la masse du Soleil).

 

        Rappelons que le type spectral d’une étoile est caractérisé par quatre éléments : sa température de couleur, sa gravité de surface, sa masse et sa luminosité, des éléments qui sont liés entre eux mais difficilement mesurables directement.

 

       La couleur d’une étoile, comme nous avons déjà eu l’occasion de l’évoquer (voir le sujet "la couleur des étoiles") est en rapport avec sa température : allant du rouge (les « moins » chaudes) aux bleues et violettes. En effet, plus un corps est chaud, plus les photons qu’il émet sont énergiques
étoile géante bleue
étoile de type B
et, parallèlement, plus leur longueur d’onde est faible. Les étoiles de type spectral B sont de couleur bleue tandis que celles du type spectral O sont violettes, donc les plus chaudes (avec parfois une température de surface qui peut atteindre 100 000K). C’est précisément en étudiant la relation entre la luminosité et la température que fut bâti le diagramme de Hertzsprung-Russell (diagramme HR) qui est en quelque sorte la carte de vie des étoiles.

 

 

les étoiles Wolf-Rayet et le diagramme HR

 

 

classification des étoiles
diagramme de Hertzsprung-Russell
Le diagramme HR nous montre une plage centrale, dite séquence principale, ou se situe la majorité des étoiles, un endroit où la plupart d’entre elles passeront l’essentiel de leur vie tranquillement, transformant leur hydrogène en hélium : par exemple, le Soleil est à mi-parcours de sa vie et se situe donc logiquement au milieu de la séquence principale du diagramme.

 

    Lorsque tout l’hydrogène d’une étoile est consommé, les plus légères d’entre elles terminent leur vie sous la forme de naines blanches c’est-à-dire d‘astres dégénérés de la taille approximative d’une planète dont la chaleur et la luminosité finissent par décroître au fil des milliards d’années. Les plus massives, en revanche, grossissent jusqu’à devenir des géantes ou des supergéantes rouges qui finissent par exploser, leur cœur s’effondrant en étoiles à neutrons ou, pour les plus grosses, en trous noirs.

 

Preuve qu’elles sont bien particulières, les étoiles WR se situent quant à elles à l’extrémité supérieure de la séquence principale du diagramme HR (en haut, à gauche) mais sans avoir complètement rejoint l’emplacement des géantes.

 

les étoiles Wolf-Rayet, des géantes très spéciales

 

Puisqu’elles quittent progressivement la séquence principale HR, cela veut dire que ces étoiles WR ne brûlent plus d’hydrogène mais, par étapes progressives, d’autres éléments, à savoir d’abord l’hélium puis le carbone, l’oxygène, etc. Durant un bref moment (en termes astronomiques), environ un million d’années, ces étoiles se mettent à expulser la matière qui entoure encore leurs noyaux sous la forme de vents stellaires à grande vitesse et ce n’est que lorsque ces noyaux seront à nu qu’elles exploseront en supernovas.

 

 Une des caractéristiques de ces étoiles WR est le fait que les vents stellaires qu’elles engendrent finissent par occulter complètement l’étoile jusqu’à en cacher son spectre stellaire. Voilà l’explication des spectres si particuliers des étoiles WR : le spectroscope n’enregistre pas chez elles leur spectre véritable (celui de la surface de l’étoile) mais celui des couches du nuage qui les entoure…

 

étoile de Wolf-Rayet, stade précurseur de supernova,
étoile de Wolf-Rayet et ses vents stellaires

 

   La matière éjectée par les vents stellaires est en fait très importante : on parle parfois « d’ouragan stellaire » tant ces vents sont intenses puisqu’ils s’écoulent à plusieurs milliers de km par seconde (soit 1% de la vitesse de la lumière !). La conséquence d’un tel phénomène est par ailleurs majeure sur l’espace galactique environnant : enrichissement du vide interstellaire en éléments nouveaux et en énergie. De ce fait des bulles se créent tandis que les vastes nuages de gaz rencontrés se compriment et s’échauffent. Toutefois, une autre conséquence importante de cette activité hors norme semble plutôt paradoxale : les étoiles WR créent de la poussière, nous y reviendrons.

 

 

évolution des étoiles Wolf-Rayet

 

Les étoiles WR sont parmi les plus rares que l’on puisse rencontrer dans une galaxie : pour la Voie lactée, on estime qu’il en existe environ 6000 (sur un total de 180 à 200 milliards d’étoiles) soit une pour un milliard d’étoiles ce qui, au fond, n’est guère surprenant puique l’on observe ici le stade évolutif très court d’une catégorie d’étoiles géantes.

 

Nous l’avons déjà signalé : les étoiles WR, selon leur masse, peuvent donner naissance à des étoiles à neutrons ou à des trous noirs mais pas seulement… Elles sont impliquées dans l’apparition de nombreux objets astrophysiques remarquables d’où, d’ailleurs, l’intérêt de leur étude. En réalité, il existe deux cas bien différents selon que l’étoile WR est isolée ou associée à une compagne dans ce que l’on appelle un système binaire.

 

* isolée, l’étoile WR évolue classiquement en étoile à neutrons ou en trou noir, on vient de le dire ;

 

* plus intéressante est l’éventualité où elle a une compagne. En pareil cas, lorsque la WR explose en supernova, il existe deux possibilités :

 

  1. le système se dissocie et, tandis que la WR se transforme en étoile à neutrons ou en trou noir à haute vélocité projetés dans l’espace, sa compagne est propulsée en sens inverse pour éventuellement devenir « une étoile en fuite ».

 

  1. si le système binaire reste lié (« en contact »), l’explosion lui confère une grande vitesse spatiale associant trou noir et/ou étoile à neutrons ce qui va immanquablement attirer l’étoile secondaire si celle-ci est de taille relativement modeste (quelques masses solaires), le phénomène amenant à la création d’un disque d’accrétion produisant quantités de rayons X. Si la WR est devenue une étoile à neutrons, le nouvel ensemble est appelé « binaire X de grande masse ». Dans le cas d’un trou noir, on parlera de microquasar. (l’équivalent à l’échelle stellaire d’un quasar à l’échelle galactique).
microquasar stellaire
microquasar

 

Il existe un cas encore plus bizarre : si l’étoile compagne est massive, elle évoluera logiquement en géante rouge qui pourra alors « absorber » l’étoile à neutrons qui risque de rester prisonnière à l’intérieur de de la géante rouge et de remplacer son cœur (on parle alors d’objet de Thome-Zytkow). Qui a dit que la Nature était trop prévisible et incapable d’inventer des scénarios bizarres ?

 

 

une poussière fertilisant l’espace

 

 

Le télescope spatial James Webb (JWST) a étudié les étoiles WR et ce fut même une de ses premières missions en 2022. Il s’est plus précisément intéressé à l’étoile Wolf-Rayet WR 124 (voir l'image d'en-tête) et a précisé la structure noueuse de ces objets et surtout de leurs éjections intermittentes. JWST, grâce à sa grande compétence dans le domaine de l’infrarouge, a précisé la nature, dans les nuages nébuleux entourant la WR, de cette poussière que nous avions évoquée plus avant.
En effet, la nature de cette poussière avait toujours intrigué les scientifiques. On savait qu’elle se compose de minuscules particules émanant du gaz stellaire qui, en s’agglomérant, se condensent pour aboutir à la formation de nouvelles étoiles. Mais pourquoi autant de poussière autour de ce type particulier d’étoiles ? Normalement, la poussière se forme préférentiellement dans les endroits tranquilles où la température est plutôt faible… Tout le contraire du voisinage d’une étoile WR  
étoile de Wolf-Rayet et vents violents en panache
étoile Wolf-Rayet et sa coquille
dont on connait le désordre incandescent  s’accompagnant d’un bombardement massif en rayons ultraviolets ! C’est la présence d’une étoile compagnon qui donne la réponse : en effet, près de l’étoile WR le gaz est très dense mais brûlant tandis que, à l’inverse, plus loin, il est froid mais dilué. C’est lorsque, porté par les vents stellaires, le gaz entre en contact avec celui de la compagne que l’ensemble peut se condenser sous la forme d’un bol ou d’une coquille puis s’échapper en une sorte de spirale,  de panache : c’est le cas de plusieurs étoiles WR à présent bien étudiées comme WR 104, WR 98a ou encore WR 112.
Avec un luxe de détails inédits, le télescope spatial a donc décrit la formation de cette poussière cosmique, riche en éléments lourds et notamment en carbone.
 Voilà comment les supernovas ensemencent l’univers en briques élémentaires qui conduiront (entre autres) à la Vie telle que nous la connaissons.

 

 

les étoiles de Wolf-Rayet : le bien et le mal

 

 

Ensemencer l’univers ? Voilà effectivement une action qu’on peut classer parmi les plus positives. On pense souvent à l’explosion d’une supernova pour expliquer la formation d’étoiles nouvelles à partir d’une nébuleuse de gaz interstellaire : c’est même l’explication avancée par de nombreux scientifiques pour la création du Soleil lui-même… et de son cortège de planètes. Avec, pour la troisième d’entre elles, l’importance du carbone dans l’apparition de la Vie.

 

Malheureusement, comme le dit l’antique adage, toute médaille a son revers et les étoiles WR sont aussi source d’inquiétude. En effet, on les soupçonne fortement d’être, lors de leurs fins brutales, responsables des sursauts gamma, notamment ceux qui durent longtemps (plus de deux secondes). Or si l’on sait que les supernovas dites classiques n’agissent que sur leur entourage stellaire immédiat, c’est bien différent pour les étoiles WR : l’énergie qu’elles produisent se trouve confinée dans d’étroits et puissants faisceaux et si, par malheur, leur alignement vise notre système solaire, il peut y avoir un danger certain pour la vie biologique. Certains scientifiques attribuent d’ailleurs la première extinction de masse sur notre planète (celle de l’ordovicien il y a 445 millions d’années) à l’émission d’une salve de rayons gamma associée à un réchauffement climatique (et non pas une glaciation comme on le pensait jusqu’à présent).

 

Notre connaissance des étoiles Wolf-Rayet a récemment bien progressé au point que, pour la première fois, des données relativement fiables concernant leur alignement ont pu être analysées et, malheureusement pour nous, il semblerait bien que WR 104 pointe directement sur notre système solaire…

 

 

Sources

 

* Encyclopaedia Universalis

* Wikipedia France :  fr.wikipedia.org/

* Revue Pour la Science, n° 554, décembre 2023, 44-51

 

Images :

1. WR 124 (sources : apod.nasa.gov)

2. étoile de type O (sources : science-et-vie.com)

3. diagramme HR (sources : astronomie.savoir.fr)

4. étoile WR et ses vents stellaires (sources : actu.fr)

 5. microquasar (sources : fineartamerica.com)

 6. étoile Wolf-Rayet et sa coquille (sources :bilimseldunya.com)

 

Sujets apparentés sur le blog

1. mort d'une étoile

2. lla couleur des étoiles 

3. la saga des rayons cosmiques 

4. sursauts gamma

5. les étoiles géantes

 

 


Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie

 

 formation-systeme-solaire.jpg

 

 

 

     Situé en périphérie de la Voie lactée qui est une galaxie parmi des milliards d’autres, notre Soleil est une étoile banale de type G2, autrement dit une naine jaune. De telles étoiles représentent environ 10% de toutes celles de l’Univers et leur durée de vie est assez longue, environ 10 milliards d’années. Le Soleil est donc à peu près à la moitié de sa vie puisqu’il existe depuis environ 4,5 milliards d’années ce qui explique, au passage, qu’il se trouve sur la branche principale du diagramme de Hertzsprung-Russell (voir le sujet : mort d’une étoile). Mais comment s’est-il créé (et avec lui son cortège de planètes) ? C’est une question posée depuis la plus haute antiquité et qui, comme on l’imagine, a entraîné de multiples réponses… plus ou moins crédibles !

 

 

 

 Dans le passé

  

Longtemps traité de façon plutôt romanesque et presque toujours anthropocentrique (voir le sujet : la Terre centre du Monde), il faudra attendre la publication par Isaac Newton (1643-1727) de ses lois sur la gravitation universelle pour s’intéresser de façon plus convaincante au système solaire. Et encore : durant de nombreuses années par la suite, les polémiques furent âpres pour s’affranchir des préjugés et raisonner de façon plus scientifique…

 

C’est Emmanuel Kant (1724-1804), le célèbre philosophe allemand, qui, le premier, avança une théorie relativement moderne. Sonnaissancedusystemesolaire2 idée centrale était que les débuts du système solaire se firent sous la forme d’un nuage de particules qui, régies par l’attraction gravitationnelle, finirent par s’agréger progressivement pour former des masses de plus en plus grosses aboutissant en fin de compte au Soleil et aux planètes que nous connaissons. Puisqu’il n’était ni physicien et encore moins mathématicien, il ne pouvait apporter d’explication sur le fait que les planètes – toutes situées dans un même plan – tournaient dans une même direction autour du Soleil. Il restait également muet sur les satellites de ces mêmes planètes.

 

Une quarantaine d’années plus tard le mathématicien français Laplace (1749-1827) apporta quelques approfondissements en imaginant que naissance systemele Soleil, se refroidissant en rayonnant sa chaleur, avait fini par se contracter. Or, selon la loi de conservation du moment angulaire, cette contraction avait forcément dû s’accompagner d’une augmentation de sa vélocité, à la façon d’un patineur qui replie ses bras pour tourner plus vite sur lui-même. De ce fait, selon Laplace, cette accélération entraîna l’éjection de matière contrebalancée par les forces d’attraction gravitationnelle (avec la formation successive de plusieurs anneaux concentriques suivant la rétraction du Soleil naissant) et c’est à l’exacte distance où ces deux forces s’équilibraient que les planètes furent créées.  Il répondait ainsi au sens de rotation des planètes dans un même plan… mais pas aux déplacements excentriques des astéroïdes ni aux orbites rétrogrades de certains lunes.

 

Durant près de cent ans, cette théorie dite « de la nébuleuse solaire » de Kant-Laplace parut satisfaire les scientifiques mais au début du XXème siècle, elle fut finalement jugée insuffisante.

 

 

 

Conception classique

 

James Clerk Maxwell (1831-1879), physicien écossais de grand renom, fut le premier à critiquer la théorie de Kant-Laplace en démontrant que les planètes n’auraient pas pu être créées de cette façon en raison des forces de rotation différentielle qui l’auraient empêché. De plus, le mouvement angulaire du Soleil paraissait trop faible pour être en accord avec la théorie. On évoqua alors la présence d’une étoile voisine qui aurait attiré de grandes masses de matière (les planètes) en dehors de notre étoile par un « effet de marée » (théorie de la « quasi-collision ») mais cette hypothèse montrait également ses limites…

 

La théorie de la formation du système solaire fut donc repensée et accretion-planetaire-2.jpgaffinée : on retint la notion de disque d’accrétion avec une matière se condensant progressivement pour donner le soleil, masse centrale suffisamment importante pour provoquer un « allumage nucléaire », et, à sa périphérie, des planétoïdes devenus secondairement de vraies planètes. Ces dernières se divisent en deux groupes :

 

*  les planètes telluriques (comme la Terre) attirant préférentiellement les matières rocheuses et proches du Soleil

 

* tandis que, plus éloignées, les planètes gazeuses se composent de gaz légers (hélium, hydrogène, etc.), le Soleil n’ayant pas pu les assimiler en raison de leur trop grande distance. La théorie précise même que si la quantité de gaz avait été plus importante, une autre étoile aurait pu voir le jour transformant le système solaire en un système binaire comme il en existe tant dans l’Univers (environ 50%).

 

Les planètes se sont évidemment transformées avec le temps mais pas les astéroïdes, circulant entre les orbites de Mars et Jupiter, qui demeurent des fragments de matière inchangés depuis la naissance du système d’où leur prodigieux intérêt scientifique.

 

Malheureusement, depuis quelques années, l’observation de planètes extrasolaires (voir le sujet : planètes extrasolaires) a permis la mise en évidence de planètes géantes gazeuses très proches de leurs étoiles. La théorie classique ne sait pas répondre à ce fait d’observation…

 

 

 

Plus récemment

 

Nous venons d’évoquer les météorites témoins de l’origine : c’est au sein de certains d’entre eux qu’a été mise en évidence, dans les années 70, la présence de magnésium 26. Or cet élément provient de l’aluminium 26, son précurseur, dont on sait que la demi-vie est plutôt courte, environ 700 000 ans. Comment cet élément a-t-il pu se trouver au début du système solaire quand on sait que le Soleil naissant avait une masse insuffisante pour le produire ? D’une provenance extérieure, bien sûr, avancèrent certains astronomes. Ils évoquèrent donc une supernova ayantnebuleuse-du-crabe.jpg explosé à proximité du nuage protosolaire au moment où ce dernier commençait à se condenser. Mais, à l’analyse, le scénario ne tient pas : en effet, en pareil cas, il aurait fallu que cette supernova explose très près (environ une année-lumière) et, dans ce cas, le nuage présolaire en formation aurait été dispersé par le rayonnement ultraviolet intense de l’étoile… Retour à la case départ.

 

Récemment, un astronome français, Vincent Tatischeff, a proposé une solution élégante en évoquant le rôle possible d’une « étoile vagabonde ». Nous avons déjà évoqué, dans un sujet précédent (voir le sujet : étoiles doubles et système multiples), ces étoiles fugueuses (ou étoiles en fuite) que les anglo-saxons appellent des runaway stars. Il s’agit d’étoiles qui ont été « éjectées » de leur orbite naturelle par la présence d’un troisième corps excitateur ou lors de la confrontation brutale entre une étoile à neutrons et sa compagne. Quelle qu’en soit la cause, l’étoile devenue vagabonde est expulsée à grande vitesse dans le vide interstellaire. Après quelques millions d’années d’une course violente, elle devient souvent ce que l’on appelle une étoile de type Wolf-Rayet qui éjecte de grandes quantités de matière dans l’espace (notamment l’aluminium 26 évoqué plus haut) avant d’exploser en supernova. Une telle étoile aurait pu « ensemencer » le nuage en formation du système solaire avant d’aller mourir plus loin. Cette fois, le scénario semble pluswolf-rayet (carène) convaincant mais il y a tout de même un hic : la survenue d’une telle éventualité est très rare. Pas impossible mais très rare. Dès lors, pourquoi faudrait-il que, parmi des milliards d’étoiles créées (et qui continuent à l’être), seul (ou presque) notre Soleil ait subi une telle origine ? Les scientifiques, on le sait, n’aiment guère expliquer des phénomènes somme toute banals, par une succession d’événements plutôt improbables…

 

 

 

une explication encore plus convaincante 

  

     Plus récemment encore, en 2012, une explication plus complète a été avancée par Matthieu Gounelle (Museum national d'histoire naturelle). Ce cosmologiste nous décrit une histoire qui prend enfin en compte les anomalies observées dans les analyses chimiques des météorites, ces témoins de la naissance de notre système solaire, notamment l'abondance anormale de magnésium 26 citée plus haut. Pour ce scientifique, l'histoire de la formation du Soleil peut se résumer en quatre phases :

 

     1. il y a environ 4,6 milliards d'années, un immense nuage de gaz et de poussières s'effondre sous l'effet de la gravitation. Au centre de ce gigantesque tourbillon naissent plusieurs milliers d'étoiles;

 

     2. parmi ces étoiles, certaines sont massives et donc de courte durée de vie (quelques millions d'années) : ce sont elles qui ensemmencent l'espace avec des élements radioactifs, notamment du fer 60 dont la présence n'avait jusque là été prise en compte par aucun scénario;

 

     3. une deuxième génération d'étoiles apparaît alors, répandant autour d'elles ce fameux aluminium 26 à la présence si surprenante.

 

     4. autour d'une étoile massive de cette deuxième génération, une enveloppe de fer 60 et d'aluminium 26 se forme et finit par s'effondrer sur elle-même donnant naissance à une troisème génération d'une centaine d'étoiles parmi lesquelles notre Soleil. Le temps passant, après plusieurs millions d'années, l'étoile massive proche du Soleil disparaît dans une explosion gigantesque tandis que les "soeurs" de notre étoile se dispersent progressivement. Notre Soleil reste seul avec son cortège d'astéroïdes qui portent encore les traces de sa création sous la forme des dérivés radioactifs qu'on vient d'évoquer.

 

      Dès lors, dans un tel scénario, les "anomalies" radioactives s'expliquent sans que l'on ait recours à l'étoile fugitive évoquée plus haut dans le sujet et dont la présence résultait d'une coincidence un peu trop facile...

 

         Cette explication est-elle définitive ? L'avenir nous le dira sans doute mais elle a le mérite d'être complète.

 

 

     On comprend donc que si la formation de notre système solaire commence à être relativement comprise, il reste encore bien des incertitudes. L’arrivée d’instruments d’observation (spatiaux et terrestres) toujours plus performants dans les toutes prochaines années devrait nous renseigner davantage : l’observation encore débutante des planètes extrasolaires de même que celle des pépinières d’étoiles nous apporteront vraisemblablement bien des éléments qui manquent encore. En effet, s’il est une chose dont on est sûr, c’est que les mêmes phénomènes se répètent selon des lois physiques immuables. Dès lors, il suffit d’observer le ciel plus ou moins lointain pour comprendre ce qui s’est passé chez nous dans le passé.

 

 

 

 

Images

1. le disque protosolaire (sources : http://www.open.ac.uk)

2. formation des planètes (sources : http://astrosurf.com/)

3. rétraction progressive du Soleil (sources : http://users.skynet.be)

4. disque d'accrétion protosolaire (sources : http://i14.servimg.com)

5. la nébuleuse du Crabe (sources :  techno-science.net)

6. étoile de type Wolf-Rayet (sources : www.infosphere.be)

  (Pour lire les légendes des illustrations, passer le pointeur de la souris dessus)

 

 

  

Mots-clés : naine jaune - diagramme de Hertzsprung-Russel - Isaac Newton - Emmanuel Kant - gravitation - Laplace - moment angulaire - astéroïdes - James Clerk Maxwell - disque d'accrétion - planète tellurique - planète gazeuse - système binaire (d'étoiles) - planètes extrasolaires - supernova - étoiles fugueuses/ réf. en français (run away stars/réf. en anglais) - étoile de Wolf-Rayet

(les mots en gris renvoient à des sites d'informations complémentaires)

   

 

 

Sujets apparentés sur le blog :

 

 1. place du Soleil dans la Galaxie

 2. la Terre, centre du Monde

 3. la querelle sur l'âge de la Terre

 4. planètes extrasolaires

 5. l'énigme de la formation de la Lune

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 Mise à jour : 6 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #astronomie
M 104 galaxie du sombrero
galaxie M 104 dite du sombrero : les étoiles situées en périphérie tournent bien plus vite autour du centre que prévu

 

 

          Dans les années trente, Fritz Zwicky (1898-1974), un astronome américano-suisse de génie, jeta un pavé dans la mare du petit Landerneau astronomique de l’époque en évoquant la possibilité de la présence d’une « matière invisible » entre les galaxies. Toutefois il reste surtout connu pour avoir été un « chasseur » de supernovas dont il fut au demeurant le premier à introduire le terme : il en découvrit plus de 150 entre 1929 et 1973 ! Il fut également le premier à prédire la transformation de certaines de ces supernovas en étoiles à neutrons et suggéra qu’elles pouvaient être à l’origine de rayons cosmiques. Ces approches novatrices furent indéniablement de grandes avancées pour la science. Malheureusement, son hypothèse sur la matière invisible, remarquable pour l’époque (nous sommes à moins de dix ans de la démonstration par Edwin Hubble que l’Univers existe en dehors de notre galaxie) fut hélas oubliée durant plus de 40 ans…

 

 

Des observations déconcertantes

 

          En 1933, donc, Zwicky s’intéresse à l’amas de Coma, un groupe de sept galaxies dont il essaie d’estimer les vitesses de rotation et, là, grosse surprise, ses calculs rapportent des vitesses bien plus élevées que prévues. Il recommence

zwicky fritz
Fritz Zwicky : un mauvais caractère mais un scientifique hors pair

ses calculs plusieurs fois mais rien à faire : il retombe sur les mêmes chiffres. Du coup, son observation va à l’encontre de l’effet attendu qui veut que la vitesse de rotation des étoiles décroisse en fonction de leur éloignement du centre galactique. Pour expliquer la différence de ce qui est observé par rapport à ce qui était attendu, il faut imaginer la présence d’une masse environ 400 fois plus importante que celle qui est visible. Tout se passe comme si les régions éloignées (les « bords ») des centres galactiques étudiés étaient en fait encore centraux et entourés par une masse énorme de « matière invisible » expliquant le phénomène.

 

          Zwicky s’empressa de transmettre ses résultats à l’ensemble de ses collègues mais il ne fut pas écouté : il est vrai que l’homme était un peu spécial… Doté d’un caractère épouvantable (c’était la terreur des étudiants), n’hésitant jamais à dire ce qu’il pensait des uns et des autres (qui était souvent négatif) et défendant de plus des théories parfois complètement farfelues, il était à part dans cette communauté scientifique encore très conservatrice. N’obtenant aucune aide qui aurait pu conforter (ou non) la justesse de son observation, Zwicky retourna se consacrer à ses chères supernovas et, durant près de quarante ans, on oublia le sujet.

 

             Nous sommes à présent en 1978, toujours aux USA, mais avec l’astronome Véra Rubin qui s’intéresse tout spécialement à M 31, la galaxie d’Andromède, et elle aussi a des ennuis avec la vitesse de rotation des étoiles périphériques autour du

rubin vera
Vera Rubin (1928-2016)

centre galactique : elles tournent bien trop vite et, comme les lois de la gravitation sont partout les mêmes, cela veut dire que ces astres « périphériques » ne le sont pas. Une masse non visible empêche les étoiles étudiées de ralentir, preuve que ces étoiles ne sont pas vraiment à la périphérie de la galaxie et que le halo de celle-ci se prolonge donc… par quelque chose. Cette fois, pas question d’oublier l’étude de Rubin : l’astronome n’est pas marginalisée et les outils d’investigation sont devenus plus précis. Il ne s’agit pas d’une erreur de calcul ce qui est d’ailleurs rapidement confirmé par d’autres observations : le halo de la galaxie d’Andromède est peut-être beaucoup plus large que prévu et cela est probablement le cas pour nombre d’autres galaxies. Elargi mais par quoi ? Car on a beau chercher dans tous les sens, on ne voit et on n’enregistre jamais rien.

 

 

Matière noire

 

          Ce composant invisible qui entoure certaines galaxies de façon plus ou moins importante et fait que les étoiles qu’on croyait en bordure galactique ne le sont pas, nul ne sait ce que c’est. C’est la raison pour laquelle la communauté scientifique le baptisa « matière noire » (ou parfois matière sombre chez les anglo-saxons).

 

      Les années passant et les calculs s’affinant avec l’augmentation des performances des outils d’étude, on arriva à la conclusion que tout l’univers visible, depuis la plus gigantesque des galaxies au plus petit nuage de gaz et de matière, ne représente que 4,9 % de l’ensemble de la matière existante… Tout le reste relève de la matière noire (26,8 %) et de son corollaire, l’énergie sombre (68,3 %).

 

 

         Deux types de particules ont très vite été présentés comme des candidats possibles :

 

  • Les neutrinos : il s’agit de particules émises lors d’une désintégration bêta et qui ont la particularité de très peu interagir avec les autres particules. Jusqu’à la fin du siècle dernier, on pensait que le neutrino n’avait pas de masse avant d’envisager finalement qu’il en possède une mais très faible. Toutefois les neutrinos sont les particules les plus abondantes de l’univers après les photons. Malheureusement, après calculs approfondis, la masse totale de ces neutrinos reste encore trop peu importante : ils pourraient au mieux représenter 18 % de la masse totale de l’univers.

 

  • Et les WIMPS (Weakly interactive massive particles), des particules lourdes interagissant faiblement avec la matière dont le représentant le plus célèbre est le neutralino, particule totalement hypothétique et faisant l’objet de nombreux efforts de recherche pour l’heure toujours infructueux.

 

          Du coup, on se trouve face à un problème quasi-insoluble tant que l’on n’aura pas isolé la particule dite « exotique » responsable de la présence de cette partie cachée de l’univers. À moins que…

 

 

 

D’autres explications sont-elles possibles ?

 

       À moins que d’autres explications puissent être avancées, oui, mais lesquelles ? Les scientifiques, échaudés par l’absence de résultats quant à l’identification d’une particule encore inconnue, étaient prêts à accepter une autre explication et c’est précisément ce que leur proposa l’Israélien Mordehai Milgrom en 1983.

 

 

 

La théorie MOND

 

          Afin de résoudre le problème de cette matière noire que personne n’arrive à identifier, Milgrom propose de prendre le problème par un autre bout : il s’agit ni plus ni moins que d’apporter une petite modification à la théorie de Newton. Évidemment, cette approche chagrine les tenants d’une physique établie depuis des siècles et dont on a depuis longtemps admis le caractère universel…

 

          Milgron a baptisé sa théorie MOND pour « MOdified Newton Dynamics », en français « dynamique de Newton modifiée ». Cette théorie répond facilement à l’absence de découverte de la matière noire puisqu’elle suppose que celle-ci n’existe pas… En fait, selon Milgron, l’hypothèse de l’existence de cette matière noire si insaisissable est due à une erreur d’interprétation (mineure) des lois de la gravitation universelle. L’essentiel de la théorie repose en effet sur le fait que la deuxième loi de Newton sur la gravitation n’a été vérifiée que pour des accélérations élevées, vérification partielle donc.

 

 

MOND theory
comparaison des courbes de vitesse de rotation des étoiles en fonction de leur éloignement du centre : ce qui était attendu en rouge et ce qui est effectivement observé en blanc:

 

 

            Rappelons que la deuxième loi de Newton s’énonce initialement ainsi : « Les changements qui arrivent dans le mouvement sont proportionnels à la force motrice et se font dans la ligne droite dans laquelle cette force a été imprimée. » On peut la formuler autrement en expliquant que la force d’attraction entre deux corps décroit comme le carré de la distance qui les sépare. Milgron propose une petite modification à cette loi en expliquant que, au delà d’une certaine limite, cette force d’attraction ne décroit plus QUE comme l’inverse de leur distance… et cela change bien des choses, notamment l’existence de la matière noire. En effet, la modification de la deuxième loi newtonienne explique alors parfaitement les vitesses plus élevées qu’attendues des étoiles situées en périphérie galactique et donc à des distances très importantes par rapport au bulbe central : à ces si grandes distances l’attraction gravitationnelle est infime… Or, si la loi de Newton s’est toujours trouvée parfaitement validée par les expériences classiques de physique, elle n’a jamais été expérimentée – et pour cause – dans des situations où l’accélération est presque nulle comme celle retrouvée aux distances immenses évoquées.

 

          Comment choisir entre la possible existence d’une particule que l’on n’a jamais pu mettre en évidence en dépit de son extrême abondance (supposée) et une théorie qui, pour expliquer les chiffres observés, modifie tout simplement les lois de la physique ?

 

 

la théorie MOND est-elle réellement valide ?

 

          Certains scientifiques crurent prouver la non-validité de MOND en se fondant sur l’observation de la collision d’amas galactiques. Voici comment.

 

  •             Si la matière noire n’existe pas, la matière dominante d’un amas galactique est du gaz. En effet, un amas est composé, bien sûr, de galaxies c’est-à-dire de milliers de milliards d’étoiles mais surtout de beaucoup, beaucoup de gaz remplissant l’espace intergalactique et s’étendant bien au-delà. Lors d’une collision entre deux de ces amas, les étoiles sont si éloignées les unes des autres qu’à de rarissimes exceptions près, elles n’interagissent pas au contraire des deux nuages de gaz. De ce fait, l’essentiel de la masse se trouvera dans la région centrale puisque la masse du gaz s’interpénétrant (donc freiné) est supérieure à celle des étoiles, non ralenties, qui se retrouvent alors de part et d’autre du centre.

 

  •            Dans le cas d’un choc entre deux amas avec matière noire, celle-ci va se comporter comme les étoiles, c’est-à-dire peu interagir. Au centre, il y aura bien la masse du gaz mais l’essentiel de la masse se retrouvera de part et d’autre (puisque la matière noire est six fois plus massive que la matière ordinaire).

 

             En résumé, lors du choc de deux amas de galaxies, si la masse résultante est centrale, cela infirmera l’existence de matière noire (seulement du gaz) tandis que si la masse se trouve de part et d’autre du centre de la collision, cela prouvera l’existence d’une masse invisible, donc de la matière noire.

 

 

         Cette preuve de l’existence de la matière noire a été établie par l’observation de la collision de l’amas du Boulet (ou amas de la Balle, IE 0657-59), observable en regard de la constellation de la Carène. Il s’agit en fait d’un groupe de deux amas de galaxies entrés en collision il y a 150 millions d’années. Après étude approfondie, les scientifiques sont arrivés à bien localiser où se trouvent les masses les plus importantes : elles sont là où sont les galaxies et non pas où se trouve le gaz. De plus, les deux amas sont à présent séparés par plus de trois années-lumière et la masse totale calculée en fonction de leur vitesse et de leur distance représente beaucoup plus que la masse de la matière visible (galaxies vues en optique et gaz aux rayons X). La présence de matière noire est donc attestée ce qui semble invalider la théorie MOND.

 

bullet cluster
image composite de l'amas du Boulet : si le gaz est bien présent au cente (en rouge), l'essentiel de la masse est de part et d'autre avec les étoiles (en bleu).

 

 

              Cette apparente contradiction a été résolue par les tenants de la théorie MOND lorsqu’ils ont admis qu’il existait bien une petite quantité de matière noire, probablement sous forme de neutrinos…

 

 

 

Une explication qui ne sera peut-être jamais trouvée

 

             En somme, pour le moment, malgré des efforts considérables (appareils de plus en plus perfectionnés, chercheurs se consacrant uniquement à la recherche de la matière noire, immenses dispositifs de capture de particules « exotiques » parfois profondément implantés sous terre, etc.), aucune capture de la moindre nouvelle particule susceptible d’expliquer la présence dans l’univers de cette masse colossale (plus de 95% !) qui reste parfaitement insaisissable.   Ce qui, indéniablement, fait désordre…

 

           Mais il n’existe pas non plus d’argument probant – et, bien sûr, encore moins définitif – en faveur de théories alternatives dont la plus célèbre reste MOND.

 

            Pourtant, cette masse inconnue ne vient pas de nulle part et si elle n’existe pas, c’est que nos moyens de calcul sont quelque part erronés. Comment savoir ? Pour certains scientifiques, la solution est à portée de main et il suffit de persévérer encore un peu. Pour d’autres, c’est l’inverse : ceux-là pensent que la matière existe sous une autre forme et que celle-ci n’interagit jamais avec la matière conventionnelle telle que nous la connaissons ; elle resterait à tout jamais hors de notre portée.

 

          C’est l’avenir qui permettra probablement de trancher. Du moins rien ne nous interdit de l’espérer.

 

 

 

Sources :

 

 

Images :

  1.  galaxie du sombrero (sources : hdqwalls.com)
  2.  Fritz Zwicky (sources : rankred.com)
  3.  Vera Rubin (sources : thesestonewalls.com)
  4.  répartition de la matière noire (sources : fr.wikipedia.org)
  5.  courbes des vitesses de rotation périgalactiques (sources : theconversation.com)
  6.  amas du Boulet (sources : passion-radio.forumactif.com)

 

 

Mots-clés : Fritz Zwicky - supernovas - amas de Coma - Vera Rubin - matière noire et énergie sombre - neutrinos - wimps - Mordehai Milgrom - amas du Boulet

(les mots en gris renvoient à des sites d'information complémentaires)

 

 

Sujets apparentés sur le blog

 

1. matière noire et énergie sombre

2. L'Univers, passé et avenir

3. les galaxies

4. l’expansion de l’Univers

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 26 mars 2023

Voir les commentaires

Publié le par Céphéides
Publié dans : #astronomie

Voici quelques courts articles parus sur le site Facebook du blog

 

GALAXIE MASQUÉE (IC 342)

 

galaxie géante
IC 342

 

   Notre galaxie, la Voie lactée, fait partie d’un groupe d’une soixantaine de galaxies appelé le groupe local. Des milliards d’autres groupes galactiques parsèment le cosmos et l’un des plus proches de nous est le groupe IC 342/Maffei qui se situe en regard de la constellation de la Girafe.

 

   Dans ce groupe voisin du nôtre prédominent deux énormes galaxies (analogues à la galaxie d’Andromède chez nous). L’une (Maffei 2) est très difficile à observer car vue par la tranche et cachée par son plan galactique. L’autre est IC 342 (photo ci-dessus), vue de face mais également très difficile à voir car presque totalement occultée parle plan de notre propre galaxie.

 

   Située à environ 10 millions d’années-lumière de nous (contre 2,5 millions d'années-lumière pour Andromède), IC 342 est une galaxie barrée géante qui si elle n’était pas cachée par le nuage d’étoiles et de gaz de la Voie lactée serait probablement une des vedettes lumineuses de nos nuits. Avec nos instruments modernes plus performants, on arrive à en distinguer les nouvelles étoiles bleues, nombreuses, les étoiles rouges sur ses bras spiraux s’éloignant du bulbe central et les nombreuses et étendues plages de poussière. Les scientifiques soupçonnent qu’IC 342 a récemment vécu une flambée de naissances stellaires, peut-être engendrée par la présence proche de notre groupe local.

Crédit-photo : Arturas Medvedevas

ASD de NASA / GSFC & Michigan Tech. U.

 

 

LA GALAXIE DU SCULPTEUR (NGC 253)

 

galaxie du Sculpteur
NGC 253

 

   Découverte par Caroline Herschel en 1783, cette galaxie porte ce nom parce qu’elle est visible en regard des limites de la constellation du Sculpteur (les Américains l’appellent également la galaxie du dollar en argent en raison de son aspect dans un petit télescope). Elle est située à 10 millions d’années-lumière de nous et mesure environ 70 000 années-lumière (comparable à la Voie lactée).

 

   NGC 253 est la galaxie la plus importante du groupe du Sculpteur, accessoirement le groupe galactique le plus proche du nôtre (appelé groupe local).

 

   La photo ci-après nous montre NGC 253 sous la forme d’une superbe galaxie spirale mais avec une particularité : des filaments de poussière paraissent s’élever du disque galactique. La présence de cette grande quantité de poussière entraîne localement un taux très élevé de formation d’étoiles, au point que NGC 253 est classé comme galaxie à sursaut de formation d’étoiles (starburst galaxy). Il s’agit le plus souvent d’une étape dans la vie d’une galaxie, un moment de sa vie où elle fabrique énormément de nouvelles étoiles à la suite d’une collision ou d’une interaction avec une galaxie voisine (mais la cause n’est pas claire pour NGC 253).

 

   La galaxie du sculpteur présente une autre singularité : elle est une source très importante de rayons X et gamma, à relier très certainement à la présence d’un trou noir central supermassif dont la masse a été estimée à 5 millions de masses solaires.

Crédit-photo et copyright : Dietmar Hager, Eric Benson

(ASD de NASA / GSFC & Michigan Tech. U.)

 

 

 

ETA CARINAE DANS TOUTE SA SPLENDEUR

 

hypergéante bleue
Eta Carinae

 

 

   L’étoile géante Eta Carinae est une hypergéante bleue, située à environ 10 000 années-lumière de nous, en regard de la constellation de la Carène. C’est une des étoiles les plus brillantes du ciel austral puisque sa luminosité est cinq millions de fois celle du Soleil tandis que sa masse est estimée à cent masses solaires : c’est dire que voilà une étoile géante candidate à devenir très bientôt une supernova. Quand exactement ? Demain ou dans un million d’années, mais, en termes astronomiques, bientôt.

 

   Elle a subi une énorme explosion il y a environ 10 000 ans seulement observée ici il y a 150 ans (le temps pour sa lumière de nous arriver), sans doute un signe précurseur de sa transformation future. C’est ainsi que s’est formée autour d’elle une nébuleuse dite de l’Homoncule en raison de sa forme.

 

   L’image ci-dessus nous montre une région centrale chaude entourée par deux gros lobes bien distincts contenant des bandes de poussière et de gaz absorbant la lumière bleue et ultraviolette de l’étoile centrale. Sur la droite de l’étoile, on observe d’étranges stries radiales rouges dont l’origine est pour l’instant encore inexpliquée.

 

   Pour toute vie biologique analogue à celle de notre planète, il serait bon de ne pas se trouver trop à proximité d’Eta Carinae lorsque viendra l’explosion finale.

 

Nota : les grandes stries multicolores émanant du centre de l’étoile en direction des bords de l’image sont en réalité un artéfact, à savoir des aigrettes de diffraction dues au télescope lui-même.

Crédits-photo : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)

ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

NGC 1512, GALAXIE ATYPIQUE

 

galaxie spirale à double anneaux
NGC 1512

 

 

   Située en regard de la constellation de l’Horloge, à un peu plus de 40 millions d’années-lumière de nous, NGC 1512 est une galaxie spirale barrée comme il en existe beaucoup dans le cosmos. Toutefois, elle présente une singularité peu commune : comme on peut le voir sur la photographie ci-dessus prise par le télescope spatial Hubble, elle possède deux anneaux.

 

   Près de son centre se distingue un premier anneau brillant en raison d’une intense formation d’étoiles : on parle alors d’anneau nucléaire. Toutefois, l’essentiel des étoiles et de la poussière interstellaire forme un second anneau bien plus éloigné du centre auquel il se rattache par une barre traversant la galaxie et par des filets de poussière.

 

   Il est difficile de connaître les raisons d’une telle structure : elle est peut-être due à une asymétrie originelle. Quoi qu’il en soit, l’anneau nucléaire s’enrichit continuellement de spirales de poussière provenant de l’anneau externe ce qui entraîne l'intense formation d’étoiles. Une partie de cette poussière continue son chemin vers un probable trou noir massif.

 

   À un peu moins de 70 000 années-lumière de NGC 1512 se trouve sa voisine NGC 1510 ; les deux galaxies sont vraisemblablement entrées en collision et les forces gravitationnelles expliquent peut-être aussi en partie le flamboiement de nouvelles étoiles.

 

   Une telle structure en anneaux concentriques est certainement rare mais pas exceptionnelle : on connait même certaines galaxies qui possèdent trois anneaux…

Crédit photo : NASA, ESA, Hubble Space Telescope

 

 

 

NÉBULEUSE DU CRABE

 

rémanent de supernova
nébuleuse du Crabe

 

   La célèbre nébuleuse du Crabe (qu’on peut voir sur la photo ci-dessus prise par le télescope spatial Hubble) est historique dans la mesure où ce fut la première à avoir été associée à l’explosion d’une supernova. L’explosion de cette étoile massive fut en l’occurrence observée par les astronomes chinois de la dynastie Song durant deux ans, de 1054 à 1056 et resta l’objet le plus lumineux du ciel nocturne à l’exception de la Lune. (Durant 23 jours elle était même restée visible en pleine journée). Ses restes concentriques (appelés rémanent) qui forment la nébuleuse proprement dite furent étudiés pour la première fois par John Bevis en 1731.

 

   S’étendant sur près de 10 années-lumière, la nébuleuse du Crabe est située à environ 6300 années-lumière de nous, en regard de la constellation du Taureau, et la vitesse d’expansion du rémanent est de 1500 km/s.

 

   Comme on peut le voir, la nébuleuse forme un réseau assez complexe comprenant de nombreux et mystérieux filaments composés principalement d’hélium, d’hydrogène et de quelques métaux lourds, le tout provenant de l'atmosphère de l'étoile de départ.

 

   Au centre, le noyau résiduel de l’étoile apparaît sous la forme d’un pulsar, c’est-à-dire d'une étoile à neutrons en rotation rapide. Rappelons qu’une étoile à neutrons est le stade terminal hyperdense de certaines étoiles massives (plus petites comme le Soleil elles finissent en naines blanches et plus grosses elles donnent naissance à des trous noirs).

 

   Tournant sur eux-mêmes à grande vitesse (parfois plusieurs centaines de fois par seconde), ces pulsars émettent un champ magnétique et lorsque qu'ils sont alignés avec la Terre, on perçoit ces émissions de façon cyclique, à la manière d’un phare dans l’espace, des pulsations qui donnent leur nom à ce type d’étoiles.

 

   Le pulsar qui se trouve au centre de la nébuleuse du Crabe tourne sur lui-même au rythme de 30 fois par seconde.

Crédit photo : NASA, ESA, Hubble, J. Hester, A. Loll (ASU) / ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

LE CASQUE DE THOR (NGC 2359)

 

étoile de Wolf-Rayet
le casque de Thor

 

   En regard de la constellation du Grand Chien, à environ 15 000 années-lumière de nous, on peut observer une bulle interstellaire ressemblant pour certains au casque du dieu nordique Thor ; il s’agit en fait d’une gigantesque nébuleuse diffuse à émission s’étendant sur à peu près 30 années-lumière (découverte par William Herschel en 1785).

 

   L’origine de cette étrange figure est l’étoile située en son centre, une géante bleue hyperchaude au stade d’évolution dit d’étoile de Wolf-Rayet. Il s’agit d’une étape qui, chez certaines étoiles géantes, précède leur explosion en supernova.

 

   En effet, après avoir épuisé leur hydrogène, ces étoiles fusionnent leur hélium puis des corps plus lourds. Dès lors, elles produisent d’énormes vents stellaires en éjectant de grandes quantités de substance au point que leur centre disparaît derrière une bulle de matière. Ce stade d’étoile de Wolf-Rayet dure peu : quelques centaines de milliers d’années, voire parfois un million d’années avant l’explosion.

 

   La couleur vert-intense de la nébuleuse est la conséquence des fortes émissions d’oxygène présent dans le nuage de gaz.

Crédits-photo : Robert Nemiroff (MTU) & Jerry Bonnell (UMCP) / ASD de NASA / GSFC & Michigan Tech. U.

Pour en savoir plus sur les étoiles géantes : étoiles géantes par Céphéides

 

 

 

UNE ÉTRANGE SPIRALE

 

binaire; géante rouge en fin de vie
LL Pegasi (en haut à gauche)

 

   Nous avons déjà eu l'occasion de voir ici-même de curieuses images dans l'espace (nébuleuses diverses, rémanents de supernovas, galaxies, amas globulaires, etc.) mais quel est donc le phénomène qui entraîne cette étrange et régulière spirale qu'on aperçoit sur la photo à gauche de l'étoile brillante du premier plan ?

 

   Il s’agit en réalité d’un système binaire appelé LL Pegasi (AFGL 3068) composé d’une étoile en fin de vie et arrivée au stade de nébuleuse planétaire (c’est-à-dire lorsqu’elle expulse ses couches externes sous la forme de coquilles qui se désagrègent dans l’espace en quelques milliers d’années) et de son compagnon.

 

   Et, ici, ce qui rend l’image différente, c’est la présence de ce compagnon. La géante rouge qui meurt laisse en effet échapper son gaz et la forme en spirale correspond à la trace laissée par le couple d’étoiles qui gravite à l’intérieur. Compte-tenu du taux d’expansion régulier du gaz, on sait qu’une nouvelle couche doit apparaître tous les 800 ans, ce qui correspond à la période orbitale des deux étoiles l’une autour de l’autre.

 

   La photo a été prise par le télescope spatial Hubble ; la spirale n’est sans doute visible que grâce à la lumière des étoiles voisines qu’elle réfléchit.

Sources image : Astronomy Picture of the Day (NASA)

 

 

 

LE CRABE AUSTRAL

 

système stellaire multiple
le Crabe Austral

 

   Voici encore une forme céleste bizarre. Comme  LL Pegasi décrit précédemment, il s’agit d’un système stellaire binaire, c'est-à-dire associant deux étoiles liées entre elles, un modèle très fréquent dans le cosmos.

 

   Toutefois, le couple stellaire est ici formé d’une naine blanche (un cadavre d’étoile) et d’une géante rouge variable de type Mira, c'est-à-dire elle-même dans la toute dernière période de sa vie. La naine blanche qui va progressivement s’éteindre au fil des millions d’années est bien plus chaude que la géante rouge. Les pulsations de cette dernière envoient ses couches extérieures sur la naine blanche mais celle-ci présente de temps à autre des éruptions qui chassent le gaz qui l’entoure au dessus et en dessous du disque stellaire central, donnant cette image en sablier, ou plus globalement d'une sorte de crabe de l’hémisphère sud (ne pas confondre avec la nébuleuse du Crabe que nous avons déjà évoquée plus haut et qui est un rémanent de supernova).

 

   La forme centrale qui correspond aux deux étoiles tournant autour l’une de l’autre mesure une demi-année-lumière tandis que ce couple de mort se trouve à environ 7 000 années-lumière de nous, en regard de la constellation du Centaure. La photo a été prise par le télescope spatial Hubble à l’occasion de sa 29ème année d’activité..

Image : télescope spatial Hubble

ASD de NASA / GSFC & Michigan Tech. U

 

 

 

LE TRIPLET DU LION

 

interactions galactiques
Triplet du Lion

 

   Dans l’hémisphère nord, on peut voir au printemps un superbe groupe galactique regroupant trois galaxies. Toutes les trois spirales, elles sont visibles sous des angles différents.

.

   À gauche, c’est la galaxie du Hamburger (NGC 3628) qui est vue de profil, par la tranche, et qui se prolonge de chaque côté par des traînées opaques de poussière. Sa taille est d’environ 100 000 années-lumière mais avec son excroissance de poussière, elle s’étend sur près de 300 000 années-lumière.

.

   En bas, à droite, la galaxie est répertoriée sous le sigle M66 et, au dessus d’elle, en haut, c’est M65. Ces deux galaxies sont suffisamment inclinées pour montrer leur forme en spirales.

.

   Ces trois galaxies sont assez proches les unes des autres pour qu’elles s‘influencent : l’action des forces gravitationnelles est visible sur les bras étirés de M66 et sur le disque épaissi et déformé de NGC 3628. À terme, dans plusieurs milliards d’années, ces galaxies fusionneront pour n’en plus former qu’une seule, gigantesque.

.

   Le triplet du Lion se situe par rapport à nous à une distance estimée de 30 millions d’années-lumière.

Crédits Robert Nemiroff (MTU), Jerry Bonnell (UMCP) et Jay Norris (représentant technique de la Nasa)

ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

LA GALAXIE DU TÊTARD ET SA LONGUE TRAÎNE

 

interactions gravitationnelles galactiques
galaxie du Têtard

 

   À partir des photos de « champ profond » du télescope spatial Hubble, il est possible d’individualiser certaines images comme celle de la galaxie du Têtard (arp 188), située à 420 millions d’années-lumière de nous, en regard de la constellation du Dragon (photo ci-dessus).

 

   Et la question qu’on se pose immédiatement à son sujet est : pourquoi cette galaxie a-t-elle une queue aussi longue ? En effet, cette « traîne » s’étend sur près de 300 000 années-lumière, présentant des amoncellements d’étoiles géantes bleues, donc jeunes. L’explication est presque toujours la même : la galaxie du Têtard a rencontré une autre galaxie et les forces de marée alors générées lui ont arraché poussière, gaz et étoiles aboutissant à ce bizarre « détricotage ».

 

   La galaxie responsable de cet immense tableau cosmique n’est pas loin (en termes astronomiques) puisqu’on la devine au travers du bras de la galaxie du Têtard, en haut à gauche : elle se trouve au-delà, à environ 300 000 années-lumière. À terme, elle viendra fusionner avec sa victime.

 

   Mais cette fusion est prévue dans bien longtemps. Auparavant, la galaxie du Têtard perdra progressivement sa queue remplacée par de petites galaxies satellites à l’endroit où les amas d’étoiles sont les plus denses..

Crédits photo : Hubble Legacy Archive, ESA, NASA ; Traitement : Faus Marquez (AAE)

ASD de NASA / GSFC & Michigan Tech. U.

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

Voir les commentaires

<< < 1 2 3 4 5 6 > >>

copyrightfrance-logo17

Articles récents

 POUR REVENIR À LA PAGE D'ACCUEIL : CLIQUER SUR LE TITRE "LE BLOG DE CEPHEIDES" EN HAUT DE LA PAGE 

 

 

Sommaire général du blog : cliquer ICI

 

 

 

 

Fréquentation

à fin avril 2024

 

Visiteurs uniques : 661 394

 

Pages/articles vus : 944 776

 

 

 

Du même auteur, en lecture libre :

 

Alcyon B, roman de science-fiction (alcyon.eklablog.com)

 

Viralité, roman (djeser3.eklablog.com)

 

Camille, roman (djeser4.eklablog.com)

 

La mort et autres voyages, recueil de nouvelles (djeser2.over-blog.com)

 

 

 

Hébergé par Overblog