Overblog
Suivre ce blog Administration + Créer mon blog
Le blog de cepheides

Le blog de cepheides

articles de vulgarisation en astronomie et sur la théorie de l'Évolution

evolution

Publié le par Céphéides
Publié dans : #Évolution

 

météorite du Yucatan à la fin du Crétacé : le hasard ?

 

 

 

     Il y a 65 millions d’années, une météorite de 10 km de diamètre s’abattait dans la presqu’île du Yucatan, au Mexique, entraînant une catastrophe telle qu’elle mit fin à la domination des dinosaures qui durait depuis 140 millions d’années (1). La conséquence principale de cette disparition fut l’avènement du règne des mammifères jusque là muselés par les grands sauriens. En effet, si leur apparition est concomitante de celle des dinosaures, au Trias supérieur, il y a environ 230 millions d’années, les mammifères furent depuis le début obligés de vivre dans l’ombre de ces grands prédateurs. Ils réussirent quand même à survivre mais en restant peu diversifiés et surtout de petite taille (forcément inférieure à celle d’un chat). Les dinosaures disparus, au bout de quelques millions d’années (un temps très court en termes géologiques), il existait déjà des mammifères de la taille d’un ours. Aujourd’hui, ils sont de toutes sortes, sur tous les continents et l’un d’entre eux, homo sapiens, a pris la place que l’on sait. On peut donc légitimement se poser une question : que se serait-il passé si l’astéroïde n’avait fait qu’effleurer notre planète ? Les dinosaures auraient-ils quand même fini par disparaître ? Et l’apparition de l’Homme aurait-elle pu avoir lieu ? Cela veut-il dire que le hasard entre, au moins partiellement, en compte dans la transformation et l’évolution des espèces ? Et qu’entend-on réellement par ce terme ambigu, de hasard ?

 

(1) Certains scientifiques avancent que le déclin des dinosaures aurait commencé quelques millions d’années avant l’impact de la météorite, provoqué par des phénomènes volcaniques (trapps du Deccan) et/ou par l’apparition des plantes à fleurs, une nourriture inappropriée pour les grands sauriens. Ces affirmations restent du domaine de l’hypothétique et, quoi qu’il en soit, la chute de la météorite aura de toute façon porté le « coup de grâce ».

 

 

Le hasard est-il pluriel ?

 

     La théorie de l’Évolution actuelle est en fait confrontée à trois sens différents du mot hasard : la chance, l’aléatoire et la contingence. Or, ces différentes notions sont souvent confondues les unes avec les autres. Il convient donc de préciser ce qu’elles recouvrent vraiment.

 

         * le hasard en tant que finalité : c’est le sens le plus fréquent qui veut que quelque chose se produise de façon inattendue par rapport à un but, que celui-ci soit conscient ou non. Prenons un exemple. Je suis en train de farfouiller dans mon bureau à la recherche d’une feuille de papier vierge pour écrire une lettre et voilà que je mets la main sur la facture que je recherche depuis plusieurs jours… Prétendre que j’ai découvert ma facture par hasard signifie que je viens de mettre la main sur cet objet très recherché par moi en poursuivant en fait un but totalement différent. C’est le sens du hasard le plus commun qui est le plus souvent décrit par les termes « chance » et « malchance ».

 

         * le hasard recouvrant des événements « aléatoires » : ici, nous pouvons prévoir qu’un événement peut se produire selon certaines conditions mais nous

sommes incapables de savoir si ces conditions sont réunies ou non pour le cas particulier qui nous intéresse. C’est par exemple le cas de la pièce de monnaie qu’on lance en l’air sans pouvoir deviner si elle tombera sur pile ou sur face. Si l’on voulait le savoir à l’avance, il faudrait connaître toutes les conditions du lancer, le poids et la forme exacte de la pièce, la force du jet, la résistance de l’air, etc. ce qui est évidemment impossible : l’événement relève donc de l’aléatoire et pour réduire ici le hasard, seules les lois de la probabilité peuvent nous aider.

 

         * le hasard en tant que contingence : stricto sensu et selon la définition du dictionnaire, la contingence est ce qui peut éventuellement arriver ou non. D’un point de vue plus scientifique, on appelle contingents des événements qui ne sont pas déductibles (donc prévisibles) à l’intérieur d’une théorie (parce que nous ne connaissons pas les conditions initiales du problème ou que les calculs se révèlent trop complexes, voire que la théorie n’existe tout simplement pas). C’est cette notion du hasard – contingent - qui est le centre d’âpres débats en science de l’Évolution. Son contraire est la nécessité, terme qui signifie qu’un événement donné en entraîne forcément un autre (qui devient donc prédictible).

 

     Lorsqu’ils débattent entre eux de la théorie de l’Évolution, les scientifiques introduisent ces notions de hasard à plusieurs niveaux tels que la dérive génétique (sur laquelle nous reviendrons), les mutations, les écosystèmes, etc. L’un des débats le plus fructueux sur cette question concerne l’identification des animaux observés dans les schistes de Burgess, sujet que nous avons déjà évoqué ici à plusieurs reprises.

 

 

La bataille de Burgess

 

     Il y a plus de 100 ans, furent mis au jour à Burgess en Colombie britannique par un paléontologue célèbre à l’époque, Charles Doolitle Walcott, plus de 80 000 fossiles vieux de 505 millions d’années et ne ressemblant pour la plupart à rien de ce que l’on connaissait jusqu’alors. Surtout - probablement à la suite d’un ensevelissement brutal - ces fossiles conservaient des appendices et des parties molles qui, habituellement, ne sont jamais présents. Or ce sont ces espèces à

faune de Burgess

corps mou qui font toute la différence avec un banal gisement du Cambrien (période la plus ancienne du paléozoïque anciennement appelé ère primaire) et nous donnent réellement un aperçu de la vie à cette époque, le Cambrien moyen. Selon les préjugés de son temps, Walcott chercha à faire entrer les animaux qu’il étudia dans les groupes principaux (phylums) alors connus car, selon lui, il s’agissait forcément de formes archaïques ayant par la suite donné les groupes d’animaux actuels (dans un contexte scientifique encore empreint d’une certaine religiosité, il n’aurait pas été concevable d’avancer que « le Créateur » avait fait naître des êtres abandonnés ensuite sans descendance). Ce n’est que bien plus tard, en réexaminant les fossiles, que les scientifiques se firent la réflexion que beaucoup d’entre eux (notamment les arthropodes qui représentent près de la moitié des espèces présentes) paraissent inclassables dans les embranchements actuels et ne correspondent à rien de connu, qu’ils appartiennent en somme à des phylums n’ayant apparemment pas donné de descendants..

 

     Il n’en fallait pas plus pour que Stephen J. Gould, le célèbre paléontologue mort en 2002, s’empare du sujet dans un de ses livres les plus fameux (« la vie est belle », 1989). Son explication est la suivante : dans les schistes de Burgess, parmi les animaux présents et appartenant à différents embranchements dont certains

Stephen J Gould

inconnus, aucun ne paraissait posséder par rapport aux autres d’avantages particuliers. Plus encore, Gould remarqua que certains des animaux n’ayant pas survécu par la suite présentaient des caractères adaptatifs très astucieux. Sa conclusion : puisque tous vivaient à armes égales, si certains ont survécu et pas d’autres, c’est que cela ne pouvait être que dû au hasard. En résumé, pour Gould, c’est la contingence (c'est-à-dire tous les événements imprévisibles survenant dans la Nature et impossibles à identifier) qui prime tout : ce qui se passe d’une certaine manière aurait tout aussi bien pu se passer autrement. Et, par voie de conséquence, cela sous-entend que l’espèce humaine est un accident biologique. Il explique ainsi que si l’on devait faire repartir l’histoire évolutive depuis le début, à la manière d’un film qu’on rembobinerait, compte-tenu des différents événements aléatoires rencontrés tout du long, elle serait certainement très différente et l’Homme n’aurait probablement aucune chance de réapparaître.

 

     Toutefois, un de ceux qui réétudia cette faune de Burgess fut Conway-Morris. Il partagea cette analyse jusqu’à ce que d’autres gisements analogues à Burgess

Simon Coway-Morris

soient découverts, notamment en Chine. Ce paléontologue changea alors complètement d’avis en expliquant que, finalement, on peut retrouver des similitudes entre les différents phylums et que la plupart des animaux de Burgess sont effectivement membres de groupes existant aujourd’hui. Ses contradicteurs lui reprochèrent alors une position idéologique le poussant à défendre une vision essentiellement chrétienne de l’évolution (ce qui était de notoriété publique). D’où une discussion acharnée avec Gould.

 

     Aujourd’hui encore, la question ne semble pas définitivement tranchée mais, s’il est vrai qu’un certain nombre des animaux de Burgess a pu être réétudié et rattaché à des groupes existant encore de nos jours, il reste nombre de spécimens dont on serait bien en peine de trouver une quelconque descendance. Alors, quelle place donnée ici à la contingence, au hasard ?

 

 

La dérive génétique

 

     La « dérive génétique » c’est l’évolution d’une espèce (ou au moins d’une population) sous l’effet d’événements aléatoires, et ceci indépendamment de la sélection naturelle, des mutations ou de déplacements géographiques. Théorisée par Motoo Kimura en 1968, cette approche s’appuie sur les variations potentielles observées durant la méiose c’est-à-dire, dans la reproduction

exemple d'allèles (plantes)

sexuée, lors de la transmission de certains caractères des parents. En pareil cas, on le sait, chaque parent ne transmet que la moitié de ses allèles. Rappelons qu’un allèle est une version variable d’un même gène : il y en a généralement deux pour un gène (parfois beaucoup plus, jusqu’à une dizaine). Du coup, certaines variantes d’un gène (certains allèles) ne seront jamais transmis à la descendance d’un adulte et, par conséquent, certains allèles verront leur fréquence augmenter ou diminuer dans la génération suivante. Évidemment si la population était de taille infinie, tous les allèles finiraient par être transmis mais ce n’est évidemment pas le cas. On peut même avancer que la non-transmission de certains allèles (la « variance ») est d’autant plus importante que la population considérée est de petite taille. Questions : 1. cette « disparition » de certains facteurs génétiques est-elle assimilable à une diminution de la diversité génétique et 2. Quel est le rôle du hasard dans ce phénomène ?

 

     Prenons le cas d’un « goulot d’étranglement », c’est-à-dire un événement qui va séparer des groupes d’individus : une inondation cataclysmique emporte le pont de terre qui reliait une presqu’île au continent. De ce fait, une partie d’une population de lézards se retrouve isolée sur la nouvelle île et cette population réduite va voir un certain nombre d’allèles non transmis lors de la reproduction. Il s’agit donc d’une diminution de la diversité génétique et on comprend facilement que plus la population concernée est petite, plus la dérive génétique est importante. Cette « dérive » génétique, c’est au bout du compte la différence croissante qui va s’instaurer entre la diversité génétique de la population isolée par rapport à la

l'isolement accidentel d'une population peut conduire à deux espèces différentes

population d’origine, dans cet exemple les lézards restés sur le continent. Les changements qu’on va alors voir survenir dans la population résiduelle, celle de la nouvelle île, ne sont évidemment pas une adaptation et, en ce sens, ils ne relèvent pas d’une sélection naturelle classique. Si la survie de cette espèce de lézards dans l’île est possible (suffisamment de ressources pour permettre le maintien d’une population efficace), peu à peu, par le biais de l’absence de certains allèles ou de mutations, cette population va évoluer pour son propre compte : dans le cas où elle serait remise en contact avec la population d’origine restée sur le continent, il est très possible qu’il ne puisse plus y avoir d’accouplements productifs entre les deux groupes devenus des espèces différentes. Cette dérive génétique due à un isolement géographique aura alors conduit à ce qu’on appelle une spéciation (apparition d’une nouvelle espèce).

 

     En arriver à un tel résultat est certainement dû au hasard (l’événement cataclysmique originel) associé secondairement à la sélection naturelle qui va privilégier les individus les mieux adaptés dans une population différente de celle du début, précisément en raison de la dérive génétique survenue. Hasard et sélection naturelle agissent donc en même temps sur les populations et sont à l’origine des changements de la diversité génétique : on parle alors d’évolution biologique.

 

Les mutations

 

     Nous venons d’évoquer les mutations génétiques en tant que facteurs de transformation d’une population spécifique d’individus mais comment surviennent ces mutations ? Sont-elles également le fait du hasard ?

 

      Rappelons très schématiquement ce qu’est l’ADN, support de l’hérédité et son rôle. Il est composé de quatre bases nucléiques : A (adénine), C (cytosine), G (guanine), et T (thymine) et c’est l’ordre dans lequel se retrouvent ces bases (il y en a des milliards) sur le brin d’ADN qui porte l’information génétique. Lorsqu’il se produit un « erreur » de transmission (une des bases – voire un groupe - est remplacée par une autre) l’information est modifiée. Trois situations sont alors possibles : dans l’immense majorité des cas, la modification est sans conséquence

ADN

et on parle de mutation neutre. Si la modification est défavorable, c’est-à-dire qu’elle met en danger son porteur, celui-ci sera éliminé avant que d’arriver à maturité pour se reproduire : on parle alors de mutation délétère qui ne peut se transmettre. Enfin, troisième possibilité, la mutation apporte un avantage sélectif à son porteur : théoriquement, ce dernier sera avantagé par rapport aux autres individus et, mieux protégé de son environnement, il se reproduira plus fréquemment ce qui permettra, peu à peu, à la mutation d’atteindre l’ensemble de la population.

 

     Ce qu’il faut également bien comprendre, c’est qu’une mutation n’apparaît physiquement pas chaque fois qu’un changement de l’environnement d’un individu se modifie de façon sensible. Par exemple, la mutation de la régulation de la lactase qui permet chez l’adulte humain de digérer le lait de vache n’est pas spontanément apparue avec l’élevage de ces animaux parce qu’on en avait besoin. Elle était présente avant l’élevage avec la même fréquence mais c’est avec l’élevage des vaches qu’elle est devenue avantageuse pour ses porteurs et qu’elle s’est petit à petit répandue…

 

     Que peut on conclure sur le rôle du hasard dans les mutations génétiques ? Eh bien que le hasard, ici, veut dire que les mutations apparaissent sans qu’il y ait de relation directe avec leurs effets sur l’organisme. Quand une base nucléique en remplace une autre, la survenue de cette mutation est indépendante de l’effet qu’elle peut avoir sur le sujet ou, dit autrement, la mutation apparaît par hasard et, puisqu’il y en a beaucoup, au fil des générations, certaines d’entre elles peuvent se révéler favorables dans un environnement donné.

 

 

Le hasard et la sélection naturelle dirigent l’évolution

 

     Pour survivre et prospérer, une population d’êtres vivants doit s’adapter à son milieu. Tant que cet environnement est stable, que ses modifications au fil du temps restent mineures, la population est bien adaptée et subit elle-même peu de modifications. Toutefois, on le sait bien, cette caractéristique de stabilité n’a qu’un temps car, tôt ou tard, des changements se manifestent : modifications du climat et donc des ressources, catastrophes naturelles, maladies, apparition ou transformations de prédateurs, etc. Dès lors, la sélection naturelle décrite par Darwin il y a déjà de nombreuses années entre en jeu (elle a toujours existé mais, compte-tenu de la stabilité de l’environnement, elle avait peu à intervenir). En sélectionnant les individus les plus aptes, elle transforme progressivement l’espèce concernée : des mutations jusqu'alors latentes apportent des réponses au changement (pour peu évidemment qu’un certain laps de temps le permette car si ce n’est pas la cas, l’extinction de la population est inévitable). Or comme nous l’avons vu, ces mutations sont apparues au hasard de l’altération d’une partie du code génétique. La sélection naturelle, mécanisme principal de l’Évolution, se comporte en réalité comme une immense machine de tri du vivant.

 

     Il existe d’autres  mécanismes de transformation des espèces : la dérive génétique est un autre moyen d’aboutir à la transformation d’une population mais, ici, l’évolution d’une espèce est causée par des événements complètement aléatoires, des événements dont la prévision est impossible (et ses effets, comme on l’a vu, sont d’autant plus importants que la population considérée est de petite taille).

 

     On peut donc affirmer que l’évolution des espèces est sous la dépendance du hasard. C’est le hasard qui assure la richesse du vivant en engendrant une multitude de différentes variations avant que le milieu ne fasse le tri par le biais de la sélection naturelle. Dérive génétique et sélection naturelle sont donc les moteurs de la diversité des espèces vivantes en permettant évidemment leur adaptation au changement mais également en assurant la stabilité des espèces bien adaptées. Ces deux différents mécanismes dirigent l’Évolution et c’est le hasard qui les régit.

 

 

Sources :

 

 

Images :

  1. Météorite du Yucatan (thenewdaily.com.au)
  2. Pile ou face (hubpages.com)
  3. Faune de Burgess (smithsonianmag.com)
  4. Stephen J Gould (cbsnews.com)
  5. Conway-Morris (bbc.co.uk)
  6. Alleles (fharrabi.skyrock.com)
  7. Lézards verts européens (en.wikipedia.org)
  8. ADN (garridofreshmentoring.com)

 

 

 

Mots-clés : météorite du Yucatan - schiste de Burgess - Stephen J. Gould - théorie de l'évolution - spéciation - sélection naturelle

 

 

 

Sujets apparentés sur le blog

 

1. le hasard au centre de la vie

2. les mécanismes de l'Évolution

3. le schiste de Burgess

4. spéciations et évolution des espèces

5. la sélection naturelle

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

Mise à jour : 24 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #Évolution

Voici quelques courts articles parus sur le site Facebook du blog

 

 

LUEUR D'ESPOIR POUR LE CORAIL

 

poisson-perroquet

 

 

     On sait que les différentes barrières coralliennes sont menacées d'extinction rapide, notamment en raison du réchauffement climatique pense-t-on. En fait, c'est plus compliqué que ça.

 

    Dans les Caraïbes, par exemple, depuis 50 ans, la moitié du corail a été détruite. Des scientifiques ont donc compilé pas moins de 35 000 études menées depuis 1969 dans 34 pays différents sur les récifs coralliens caribéens. Surprise : les principaux responsables du massacre sont la surpêche et la pollution côtière...

 

     En fait, en 1983, une épidémie a décimé là-bas l'oursin-diadème qui se nourrit des algues proliférant sur les récifs et étouffant le corail. Du coup, ne restent plus comme prédateurs de ces algues que les poissons-perroquets... victimes de la surpêche. Partout où celle-ci est mieux combattue, les récifs coralliens sont en meilleure santé et résistent d'autant plus aux cyclones qu'ils sont riches en poissons-perroquets !

 

     Ce n'est pas tout : on a pu également mettre en évidence que partout où les requins étaient trop chassés, ils libéraient des niches propices au développement de petits poissons carnivores qui attaquent les poissons herbivores comme nos poissons-perroquets... Qui aurait pu penser que les grands squales protègent indirectement le corail de ces mers chaudes ?

 

     Ceci nous rappelle une notion fondamentale : tous les êtres vivants font partie d'une chaîne alimentaire et lorsque l'un des maillons de la chaîne est atteint, c'est tout le reste des vivants qui souffre ! On en trouvera plusieurs illustrations dans le sujet du blog : "superprédateurs et chaîne alimentaire

 

photo : poisson-perroquet (sources : Futura-Sciences)

 

 

 

 

 

L'ENNEMI N'EST PAS TOUJOURS CELUI QUE L'ON CROIT...

 

une peste végétale : le kudzu

 

 

     Tenez, prenez le cas de cette assez jolie plante que l'on appelle le Kudzu et qui est réputée pour permettre l'arrêt de certaines addictions comme celles à l'alcool ou à la nicotine. Je ne sais pas si ses exploits en la matière sont réels ou supposés mais ce dont je suis sûr, c'est que le kudzu est l'une des pires "pestes" végétales existantes.

 

     Originaire du Japon, le kudzu a été introduit aux USA pour stabiliser certains sols et faire un peu d'ombre sous la forme de tonnelles improvisées. Malheur ! Ce que l'on ne savait pas (?), c'est que cette plante a une croissance tellement rapide (jusqu'à 30 cm par jour) qu'elle envahit tout en très peu de temps et la voilà qui recouvre rapidement tous les végétaux (notamment les arbres) qu'elle étouffe, les réverbères, les panneaux indicateurs ou publicitaires et même les murs et les toits des maisons ! Aux États-Unis où l'on n'arrive pas à s'en débarrasser, elle a envahi des milliers de km² de forêts et de champs et la lutte contre cet ennemi si prolifique est un combat de tous les instants : un moment de relâchement et tout est à recommencer !

 

     Mais ce n'est pas tout : voilà que les scientifiques l'accusent de participer au réchauffement climatique : le kudzu réduit le volume de carbone stocké dans les sols des endroits envahis par lui, notamment en détruisant les végétaux qui, eux stockent ce gaz à effet de serre. Un vrai poison que nul herbicide ne sait enrayer.

 

     Méfiance donc pour tous ceux qui, à des fins thérapeutiques, souhaiteraient se lancer dans des "cultures sauvages" de cette plante aux vertus... contrastées !!!

 

photo : forêt pétrifiée par le kudzu (sources : tenfreshfruits.com)

 

 

 

 

 

UNE ARAIGNÉE HÉROÏQUE !

 

stegodyphus lineatus et ses petits

 

 

 

     Elle s'appelle stegodyphus-lineatus et est une petite araignée velue d'environ un cm et demi. Elle habite l'Europe, l'Asie et le nord de l'Afrique et est connue pour faire partie des araignées cannibales...

 

     Oui mais cannibale comment ? Parce qu'on connait bien ces araignées femelles qui, lors de l'accouplement, dévorent le mâle qui ne s'est pas enfui assez vite mais, ici, l'histoire est différente. En effet, Stegodyphus a un destin tout à fait spécial (du moins la femelle de cette espèce). Dès que la fécondation a eu lieu et que commence l'incubation, les tissus abdominaux de la mère araignée ramollissent progressivement. Une sorte de préparation à la naissance des enfants.

 

     Lorsque que celle-ci a lieu, la mère araignée commence par régurgiter toutes les bonnes réserves qu'elle avait faites pour ses petits. Mais, très vite, cela ne suffit pas pour ses 80 rejetons. Alors, elle se sacrifie et, suicidaire, s'offre à l’appétit féroce de ses petits en se liquéfiant littéralement. Bientôt, il ne reste plus que son squelette desséché... et 80 petites araignées en pleine forme qui partent découvrir l'Univers !

 

     Au fil des millions d'années, c'est ce scénario génétiquement inscrit que la sélection naturelle a gardé pour ces étranges animaux car, au bout du compte, dans la Nature, l'individu ne compte pas : seule la survie de l'espèce a de l'importance;

 

photo : une stegodyphus et ses petits (sources : www.lemonde.fr)

 

 

 

 

 

LE PLUS VIEUX MEURTRE DU MONDE

 

 

 

 

     430 000 ans, tel est l'âge du plus vieux meurtre (connu) pour l'espèce humaine. En réalité, pas l'espèce humaine actuelle mais chez un précurseur, homo heidelbergensis, probable ancêtre de l'homme de Néandertal, notre lointain cousin.

 

     C'est en Espagne, dans la grotte d'Atapuerca, déjà citée dans ce journal du blog, qu'a été faite cette découverte, récemment publiée dans la presse scientifique.  On a donc retrouvé le squelette d'un hominidé ayant vécu il y a fort longtemps, portant une profonde fracture au dessus de l’œil gauche. Une plaie mortelle causée par un "objet contondant" ayant frappé la victime à deux reprises, les protagonistes se trouvant face à face. La répétition du geste avec le même instrument (on en est certain grâce à une reconstitution virtuelle) traduit à l'évidence l'intention de tuer. Pourquoi ? On ne le saura jamais mais il s'agit très certainement d'un "différend domestique" puisque l'endroit n'est pas un théâtre de combats.

 

     En ce siècle de violences ultra-médiatisées, on s'étonne de l'agressivité dont font preuve tant d'individus : comme on peut le constater dans l'exemple que je viens de rapporter, tout ça remonte à loin et, j'en fais le pronostic, n'est hélas pas près de s'arrêter !

 

photo (source : www.plosone.org/)

 

 

 

 

 

UN IMITATEUR DOUÉ

 

oisillon d'Aulia

 

 

 

     C'est dur de survivre seul dans la jungle lorsque les parents sont partis chercher de la nourriture et qu'ils ne reviennent que durant quelques instants, une fois par heure environ. et d'autant que la nidification est plutôt longue, plus de 20 jours. Comment tromper les prédateurs ?

 

     La sélection naturelle a permis à l'oisillon de l'aulia cendré d'adopter une attitude étonnante. Alors que les plumages de ses parents sont d'un gris banal, son apparence à lui est éclatante, comme en témoigne la photo. Sera-t-il dès lors plus en vue et donc susceptible d'attirer les prédateurs ? En réalité non car son duvet imite à la perfection... une chenille toxique des environs. L'oisillon en a la taille (environ 15 cm), l'apparence mais aussi le comportement puisque, en l'absence de ses parents, il ne fait aucun bruit et se met à onduler de la tête pour simuler le déplacement de la chenille : dès lors, les éventuels prédateurs préfèrent se détourner !

 

     On appelle ce phénomène du mimétisme batésien (imiter l'apparence d'un animal toxique) et c'est très rare chez les oiseaux. En aura-t-il fallu des millions de générations de ce petit passereau dans la forêt tropicale pour qu'une mutation de ce genre apparaisse et s'implante enfin au détriment des autres nids décimés...

 

       Pour en savoir plus sur le mimétisme animal : le mimétisme, une stratégie d'adaptation  et comportements animaux et évolution

 

photo : oisillon d'aulia cendré (sources : plus.google.com)

 

 

 

 

 

ÉTHOLOGIE : LA POLITIQUE DE L'INFANTICIDE

 

un lion et le petit d'un autre

 

     Dans les reportages animaliers de la télé, on nous montre parfois (mais c'est difficile à regarder), le meurtre des petits de la lionne lorsque le mâle qui la féconda a été évincé par un plus fort. Ce dernier fait alors semblant de jouer avec les lionceaux puis devient brutal tandis que les petits s'étonnent et, soudain, le grand mâle leur brise la nuque sans que la mère intervienne... Cela mettra fin à la lactation de celle-ci et la rendra à nouveau féconde pour le nouveau venu... dont le seul but (inconscient) est de diffuser son propre ADN. Il ne s'agit là que d'un exemple parmi bien d'autres.

 

     Un chercheur du CNRS de Montpellier a publié il y a quelques mois dans la prestigieuse revue "Science" les résultats de 30 ans d'étude des infanticides chez les mammifères. Surprise : sur 260 espèces étudiées, dans plus de la moitié d'entre elles, les mâles tuent les petits s'ils n'en sont pas les pères ! Cela concerne, bien sûr, les lions comme on vient de le voir mais aussi les singes, les hippopotames, les ours, les léopards, les zèbres, les chiens de prairie, les lièvres, les marmottes, etc.

 

     Chez les singes (babouins, gorilles, chimpanzés, etc.), tous ont recours à cette politique du vide génétique. Chez les babouins du Botswana dont les dominants peuvent changer au fil de quelques jours, c'est parfois un véritable massacre : 80% des bébés d'un même groupe peuvent ainsi être trucidés ! Il existe toutefois une exception : les bonobos ne pratiquent pas l'infanticide et ce sont, curieusement, nos plus proches parents.

 

     Toutefois, le pacifisme de nos cousins bonobos n'a eu aucune influence sur l'espèce humaine : l'Homme est en effet le SEUL MAMMIFÈRE à tuer même sa propre descendance ! Rien de très glorieux, on est bien obligé de le reconnaître...

 

photo : un lion et le petit d'un autre (sources : www.sciencesetavenir.fr)

 

 

 

 

 

OISEAU FAUSSAIRE

 

Drongo brillant (Dicrucus adsimillis)

 

 

 

     Les lois de l'Évolution sont innombrables et parfois difficiles à saisir. Tenez, dans le désert du Kalahari, au Botswana (Afrique de l'est), vit un drôle de petit personnage : le drongo (voir photo). Le drongo est un petit oiseau du type passereau qui dispose d'une très large palette vocale (répertoire individuel variant de 9 à 32 cris différents) et il sait s'en servir. En effet, le drongo est un simulateur.

 

     Puisqu'il semble plus facile de s'approprier ce qui ne vous appartient pas plutôt que de faire soi-même le travail, il ruse. Parfois, c'est vrai, le drongo a effectivement repéré un prédateur qui s'approche doucement : il permet alors à l'ensemble des oiseaux, y compris lui-même, de s'enfuir. Mais, à d'autres moments, il ne s'envole pas car il sait pertinemment qu'il vient d'émettre une fausse alarme et qu'il n'y a aucun danger : il n'a plus alors qu'à aller se servir parmi les insectes et vermisseaux isolés par les victimes de sa tromperie.

 

      Bien entendu, de tels subterfuges finiraient pas s'épuiser à force d'être utilisés. c'est là que le drongo montre toute sa force (ou sa capacité de nuisance) puisqu'il est capable d'émettre jusqu'à plus de cinquante fausses alarmes différentes, arrivant ainsi à duper plusieurs fois les mêmes victimes...

 

     Ce que l'on ne sait pas encore, c'est si cette aptitude à simuler est innée, c'est à dire apparue il y a longtemps et transmise depuis génétiquement, ou bien apprise à chaque génération d'enfants par les parents. Inné ou acquis, le drongo s'en moque bien et sait profiter du travail des autres !

 

    Pour en savoir plus sur les caractères innés ou acquis dans le monde animal : l'inné et l'acquis chez l'animal

 

photo : un drongo (sources : news.sciencemag.org)

 

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 24 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #Évolution, #paléontologie
le carbonifère : insectes, fougères géantes et premiers arbres à écorce

 

 

     Nous allons évoquer une période ancienne, très ancienne, appelée le carbonifère, une époque appartenant au paléozoïque supérieur (autrement dit l’ère primaire) et s’étendant de – 359 à – 299 millions d’années (Ma). Notons toutefois qu’il s’agit là de chiffres difficiles à concevoir par le cerveau humain quand on sait que nous paraissent déjà immenses les environ 10 000 années de présence sur Terre de l’homme dit moderne. Inaugurée par une extinction de masse, le carbonifère dura une soixantaine de millions d’années au cours desquels la Terre se transforma profondément.

 

 

 Extinction de masse du dévonien

 

     C’est à la fin de la période de l’ère primaire précédente, le dévonien, qu’une très importante extinction de masse fit disparaître 70% des animaux marins. La Terre était alors occupée par un seul continent situé au pôle sud tandis qu’un chapelet d’îles et d’archipels s’étalait à l’équateur : tout le reste n’était qu’un immense océan. Sur le continent unique, la température était élevée avec un indice hygrométrique important : chaleur et humidité, il n’en fallait pas plus pour que s’étale sur terre une végétation

l'extinction dévonienne commença par les océans qui s'étouffèrent

luxuriante où régnaient en maîtres les insectes, le reste de la faune étant quasi-inexistant. C’est dans l’océan que la diversité foisonnait : éponges, coraux, brachiopodes, nautiloïdes, trilobites auxquels il faut ajouter des poissons de toutes sortes. Tout ce petit monde proliférait dans des eaux chaudes et lumineuses et c’est alors que se produisit la deuxième grande extinction  de masse de l’histoire de la Terre (la première remontait à l’ordovicien, 100 Ma auparavant).

 

     L’extinction dévonienne ne fut pas brutale et s’étendit sur des dizaines de milliers d’années. Inaugurée par un réchauffement climatique, elle se traduisit par l’apparition de séismes sous-marins et d’émissions de gaz surchauffés qui entraînèrent un manque d’oxygène progressif de l'océan puis de l'atmosphère (appelé événement Kellwasser) s’ajoutant à l’empoisonnement de l’eau par des métaux lourds.  L’ensemble aboutit à la destruction massive de la faune marine. Il faudra ensuite attendre environ 250 000 ans avant que les arbres produisent suffisamment d’oxygène et que les températures se stabilisent pour initier un renouveau. Mais l’extinction aura détruit les ¾ des animaux marins, eux qui représentaient à cette époque l’essentiel de la vie sur Terre.

 

 

Le carbonifère

 

     Succédant immédiatement au dévonien et à sa terrible extinction de masse, le carbonifère doit son nom au fait que l’époque fut particulièrement riche en végétaux, leur fossilisation ayant secondairement donné naissance à la houille si indispensable à l’espèce humaine lors de l’avènement de l’’époque industrielle. Un processus d’autant plus actif que c’est à cette époque qu’apparurent les premiers arbres revêtus d’écorce dont la sédimentation consécutive, par exemple, à une inondation ou à un incendie produisait du charbon.

 

     Le carbonifère commence par une très importante transgression marine (c’est-à-dire l’envahissement des terres par la mer) qui concerne toutes les masses continentales avec d’importants dépôts de calcaire.

 

     Du point de vue de la tectonique des plaques, la période se traduit par de grands

changements avec la fusion des plaques américaine, européenne et gondwanienne (le Gondwana étant une partie du supercontinent précédent) pour former un nouveau supercontinent appelé Pangée (qui subsistera jusqu’au Trias, à l’ère secondaire, soit près de 60 millions d’années plus tard). Tout autour de la Pangée s’étend un océan unique nommé Panthalasa et une mer intérieure, la Paléothetys.

 

     L’érosion qui accompagne les bouleversements géologiques et la luxuriance, voire l’opulence de la végétation colonisant le continent ont pour principale conséquence de faire considérablement baisser le taux de CO2 de l’air et, du même coup, la température globale de la planète : celle-ci s’ajuste en fonction de la latitude, les terres du pôle sud se couvrant de glace.

 

    Ces différences de température vont avoir pour effet de permettre le développement d’arbres à feuilles caduques dans les zones tempérées tandis que les grandes forêts houillères s’étendent tout au long de l’équateur. Dans les zones tempérées, les fougères aux feuilles à sporanges (c'est-à-dire des organes plus ou moins cachés contenant les spores) se voient concurrencées par d’autres espèces de fougères dont les feuilles portent des graines mieux protégées (par un ovaire) et plus facilement accessibles,  notamment par les insectes pollinisateurs : c’est le point de départ des plantes à fleurs qui coloniseront secondairement la planète.

 

    Ces changements, certes progressifs mais durables, vont bien sûr également concerner la faune.

 

 

La faune du carbonifère

 

     Dans la mer, la vie est particulièrement animée avec notamment une grande activité des coraux, qu’ils soient coloniaux ou solitaires. Les brachiopodes (animaux à coquilles bivalves) ont également un succès évolutif certain (il n’en reste aujourd’hui que quelques espèces relictuelles, c’est-à-dire peuplant un habitat restreint où ils sont peu concurrencés). La Paléothétys est également peuplée par des animaux présents depuis le début du paléozoïque (et qui subsistent encore aujourd’hui avec succès) : les échinodermes tels étoiles et concombres de mer, oursins, etc. Ces animaux dont l’apparition remonte à – 525 millions d’années (voire plus avant encore) se sont finalement peu transformés depuis le carbonifère où ils prospèrent : les scientifiques

trilobite, arthropode dont le déclin commença au carbonifère

évoquent environ 13 000 espèces aujourd’hui éteintes contre 7 000 encore bien présentes. De la même façon, les mollusques (moules, coques, huîtres, etc.) se développent à cette époque de manière satisfaisante. En revanche, les trilobites, ces arthropodes marins qui existent depuis le cambrien (- 540/ - 485 Ma) commencent à décliner : ils disparaitront définitivement lors de l’extinction de masse du permien (- 250 Ma). Signalons enfin la présence et le développement des requins, existant depuis le dévonien mais qui présentent alors des formes plutôt étranges à l’instar des requins-enclumes…

 

     C’est sur terre que le carbonifère réserve quelques surprises : il grouille de vie ! On y trouve toutes sortes d’habitants, à commencer par les insectes déjà présents à la période précédente : le sol est le terrain de chasse de mille-pattes, de scorpions, de toutes sortes d’araignées qui se faufilent entre fougères géantes et premiers conifères tandis que planent au dessus de ce petit monde une foule d’insectes ailés. C’est à cet univers assez surprenant que nous allons à présent nous intéresser.

 

 

Le monde des insectes géants

 

     Jusqu’à récemment, les scientifiques étaient d’accord pour affirmer que les insectes vivant au carbonifère étaient des géants comparés à ceux d’aujourd’hui et que leur transformation au fil des temps géologiques étaient allée vers leur rapetissement. C’est sûrement vrai pour certains d’entre eux comme on le verra par la suite. Toutefois, croire qu’il s’agit là d’une règle absolue semble illusoire à la lumière des découvertes récentes. En réalité, de très petits insectes prospéraient également à cette période et il aura fallu bien du temps pour s’en convaincre.

 

     Il est vrai que la diversité des insectes encore aujourd’hui est telle que les experts scientifiques sont dans l’incapacité de les compter. À ce jour, on a décrit environ un million d’espèces différentes mais on estime qu’il en existerait probablement dix fois plus, une grande partie d’entre elles étant présente dans les canopées des grandes forêts tropicales, notamment amazonienne. Il est même suggéré que, une extinction de masse étant actuellement en cours en raison de la présence délétère de l’Homme, la plupart de ces espèces auront disparu avant même d’avoir été identifiées.

 

    Mais des insectes géants existaient bien au carbonifère et ils étaient très certainement effrayants pour nos cerveaux plutôt habitués à des insectes de taille (généralement) relativement modeste. Imaginez : survolant marais, étangs et cours d’eau, ou bien cachés dans les fougères et les arbres primitifs, ces géants pourchassaient, tuaient et dévoraient tout ce qui bougeait, y compris leurs propres congénères. Citons sommairement quelques uns des plus célèbres :

 

  • Meganeura Monui est probablement l’insecte le plus emblématique du carbonifère. Il s’agit d’une libellule géante dont l’envergure pouvait dépasser les 70 cm pour un poids de 150 grammes. Disons pour fixer les esprits que cette libellule avait une carrure digne d’un goéland ou d’un faucon. Elle affichait un abdomen
    taille de meganeura comparée à celle d'un homme
    particulièrement allongé et possédait quatre grandes ailes renforcées par des nervures et fixées à angle droit à son thorax.  Ses six pattes articulées étaient recouvertes d’épines pour accrocher ses victimes. Sa tête était dotée d’yeux énormes susceptibles d’observer autour d’elle à 360° et s’ornait également de pièces buccales destinées à mordre. Après avoir repéré une proie, les scientifiques ont calculé qu’elle pouvait fondre sur elle à la vitesse prodigieuse de 70 km/h car, contrairement aux libellules actuelles qui chassent « postées », elle attaquait en vol. Elle n’avait d’ailleurs que l’embarras du choix tant la terre était grouillante de vie : cafards, blattes, punaises, cigales, scarabées, moustiques, guêpes, termites, fourmis, petits reptiles, etc. Le bourdonnement permanent de l’atmosphère devait être assourdissant si l’on en juge par une anecdote rapportée par Darwin lui-même : il raconte que lors de son périple à bord du Beagle, il fit escale dans la baie de Rio de Janeiro, alors encore peu habitée. Le bateau mouilla à plusieurs encablures de la rive, donc loin du rivage, et pourtant le naturaliste anglais eut du mal à dormir tant un bourdonnement continu dominait tous les autres bruits naturels. Il s’agissait du bruissement de la vie nocturne des nombreux insectes, bruissement parait-il encore plus intense le jour. Et on était au XIXème siècle : on imagine aisément ce que cela devait être au carbonifère !

 

  • Rampant dans les sous-bois des forêts tropicales de la fin du carbonifère (et du début du permien, l’époque suivante), Arthropleura était un gigantesque mille-pattes. Qu’on en juge : il pouvait atteindre 2 m de long (voire un peu plus) pour une largeur de 50 cm ! Heureusement pour ses contemporains, il était herbivore, du moins si l’on s’en réfère aux traces de pollen découvertes dans son tube digestif fossilisé. Toutefois, la présence de deux pinces situées sur le devant de son corps et d’une très puissante mâchoire laisse encore planer un doute…

 

 

  • Megarachne, quant à elle, comme son appellation l’indique, relève plutôt de la famille des arachnides. D’ailleurs, lors de la découverte de son fossile, les scientifiques pensèrent tout simplement avoir mis au jour la plus grande araignée
    megarachne (vue d'artiste)
    ayant jamais existé sur Terre. En réalité, l’animal est à présent classé comme un euryptide, c’est-à-dire plutôt un animal marin se rapprochant des scorpions de mer. C’était néanmoins un être impressionnant car d’une longueur de 35 cm avec une distance de 60 cm entre les pattes supérieures. À titre de comparaison, une des araignées actuellement parmi les plus grosses du monde est la tarentule Goliath mangeuse d’oiseaux dont la taille avoisine les 30 cm tandis qu’elle possède des crocs de 2,5 cm.  On peut également citer, vivant dans les forêts tropicales d’Amérique du sud, la femelle Theraphosa (30 cm d’envergure pour un poids de 170 grammes) qui, outre ses crocs pouvant occasionner une très
    theraphosa blondi (Brésil, Guyane, Vénézuela)
    forte douleur chez l’Homme, est capable de lancer des poils urticants entraînant de fort douloureuses démangeaisons. Quoi qu’il en soit, au carbonifère Megarachne occupait le sommet de la prédation (seule Meganeura décrite plus haut avait une taille susceptible de rivaliser avec la sienne). Elle ressemblait effectivement à une araignée géante (d’où l’erreur des premiers observateurs) en raison de la forme de sa carapace, de son abdomen sphérique et de ses yeux circulaires de 15 mm, engoncés entre deux autres yeux, au centre de sa tête. On ne sait pas si son corps était recouvert de poils comme celui d’une mygale.

 

     Au cours des âges géologiques, il existe peu de cas relevant d’un gigantisme aussi absolu. Nous avons déjà évoqué la course au gigantisme représentée par l’apparition d’une classe spéciale de dinosaures, les sauropodes (voir le sujet : la tentation du gigantisme) mais le contexte était bien différent. Quelles peuvent être les explications d’un tel phénomène au carbonifère ?

 

 

Pourquoi des insectes géants au carbonifère ?

 

     L’explication longtemps avancée par les scientifiques concerne le taux d’oxygène dans l’atmosphère de cette époque. Aujourd’hui, celui-ci est voisin de 21% (et a d’ailleurs tendance à baisser imperceptiblement) contre 35 % à l’époque que nous évoquons. Ce taux élevé était la conséquence des milliers d’années précédents où, comme nous l’avons déjà dit, les arbres ont peu à peu reconstitué le stock d’O2 mis à mal lors de l’extinction dévonienne. Or, araignées et insectes ont besoin de beaucoup d’oxygène pour grandir et il est vrai que, par la suite, la raréfaction des forêts et la chute concomitante du taux d’oxygène ont certainement eu raison du mille-pattes Arthropleura, voire peut-être aussi de Megarachne qui devait étouffer avec un taux d’oxygène progressivement réduit.

 

     Il existe pourtant d’autres raisons. Ces insectes géants, on l’a vu, occupaient le haut de l’échelle de prédation puisque leur taille était un avantage décisif : nourriture abondante, taux d’oxygène maximal et aucun prédateur réel expliquent leur succès adaptatif. Jusqu’à l’apparition des vertébrés qui, venus de la mer, colonisèrent progressivement les terres. Or, les reptiles planeurs puis volants firent leur apparition et ils chassaient les mêmes proies. La concurrence devint féroce. Enfin, dernier changement et non des moindres, l’apparition des précurseurs des plantes à fleurs autour des étangs et des lacs où se développaient les libellules géantes entraînèrent un changement complet de l’écosystème. Tous ces éléments conjugués furent fatals aux derniers insectes géants…

 

 

 

 

Il est intéressant de constater que la Vie, toujours, partout, essaie de se frayer un chemin et qu’elle est opportuniste. Les insectes du carbonifère ont accru leur taille – et donc leur indice de prédation – en profitant de circonstances particulières qui ne se sont jamais reconstituées par la suite et c’est la disparition de ces facteurs favorisants qui précipita leur chute. On retrouve là le hasard mélangé à un certain déterminisme, ce que le paléontologue Stephen J. Gould résumait sous le terme de contingence. Quelques dizaines de millions d’années plus tard, après des débuts plutôt modestes, d’autres populations animales allaient également profiter de circonstances favorables et occuper l’espace alors laissé vacant : les dinosaures dont le règne s’étalera sur plus de 160 millions d’années.

 

 

 

 

 

Sources :

 

 

Images :

  1.  carbonifère (sources : palaeopost.blogspot.com )
  2.  extinction dévonienne (sources : bbc.com)
  3.  la Pangée à la fin du carbonifère (sources : geocaching.com )
  4.  trilobite (sources : landbeforetime.wikia.com)
  5.   meganeura (sources : sharksprehistory.blogspot.com )
  6.  megarachne (vue d'artiste) (sources : youtube.com )
  7.  theraphosa blondi sources : exotic-animals.org)

 

 

 

Mots-clés : ordovicien - dévonien - extinction de masse - transgression marine - Gondwana - Paléotéthys

 

 

 

Sujets apparentés sur le blog

 

1. les extinctions de masse

2. la dérive des continents ou tectonique des plaques

3. la tentation du gigantisme

 

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 25 mars 3023

Voir les commentaires

Publié le par cepheides
Publié dans : #Évolution
arbre phylogénétique du vivant

 

   Les origines de la vie sur Terre demeurent incertaines. Difficile de dire exactement où cette vie est apparue, ni quand. Notre bonne vieille Terre est âgée d’environ 4,5 milliards d’années, l’âge du système solaire, et c’est au bout d’environ 500 millions d’années qu’il semble que soient apparues les premières cellules susceptibles de donner un être vivant. On sait que les plus anciens fossiles de micro-organismes sont âgés d’environ 3,5 milliards d’années, certaines études allant même jusqu’à affirmer qu’un âge de plus de 4 milliards d’années serait plus près de la réalité. Cette époque si lointaine, ces premiers 500 millions d’années, sont appelés l’hadéen (première partie du précambrien) par les scientifiques et c’est probablement vers la fin de cette phase qu’est apparu celui qui allait devenir l’ancêtre de tous les êtres ayant vécu et vivant encore sur Terre.

 

   Lorsqu’on observe attentivement une forêt tropicale, ou même un simple étang de nos régions tempérées, on est frappé par la diversité du vivant, par la profusion d’espèces qui, pour la plupart, partagent un écosystème sans jamais se rencontrer vraiment, cette possibilité n’étant donnée qu’aux couples prédateurs-proies. Tout ce monde grouillant de vie provient donc d’un même ancêtre et, au fil du temps (des centaines de millions d’années, si difficiles à comprendre pour nos cerveaux qui ont du mal à seulement intégrer quelques milliers d’années), la sélection naturelle, en fonction des changements de milieu, a progressivement modelé la Vie. L’immense majorité des espèces qui, à un moment ou à un autre, a peuplé notre planète, a, à présent, disparu, emportée par le hasard d’un élément contraire auquel elle n’a pas su ou pu s’adapter.

 

   L’homme est un des animaux survivants aujourd’hui mais son apparition sous sa forme actuelle ne s’est évidemment pas faite d’un seul coup. Tout au contraire, il aura fallu bien des évolutions, bien des formes intermédiaires et bien des hasards pour en arriver à la situation présente. Je me propose de revenir sur les principales étapes qui ont permis, depuis le premier ancêtre commun, à Homo sapiens d’être ce qu’il est. Les étapes retenues sont au nombre de treize et, à chacune d’entre elles, la branche qui conduira à Sapiens s’est séparée d’autres représentants du monde vivant que nous évoquerons succinctement.

 

 

 

Étape 1 : l’homme est un eucaryote (- 2 milliards d’années)

   

Eucaryote signifie « ceux qui possèdent un véritable noyau » par opposition aux procaryotes que sont bactéries et archées, autrefois nommées archéobactéries. Ces eucaryotes (mono ou multicellulaires) ont pour caractéristiques principales de posséder un noyau contenant de l’ADN, porteur des caractéristiques génétiques. Ils peuvent se diviser (mitose) et se reproduire (pour la grande majorité au moyen d’une reproduction sexuée). À ce titre, l’homme est un eucaryote, tout comme les champignons et les plantes.

 

 

 

Étape 2 : l’homme est un métazoaire (- 900 millions d’années)

 

   Le terme de métazoaire correspond aux animaux et, puisqu’il est l’un d’eux, l’homme est un organisme multicellulaire capable de se nourrir de constituants organiques préexistants (on parle alors d’hétérotrophie). Du coup, plantes et champignons sont ici exclus. Il est à noter qu’il aura fallu plus d’un milliard d’années pour voir apparaître ce type d’organismes, une période si longue qu’elle est impossible à concevoir réellement pour l’esprit humain.

 

 

 

Étape 3 : il est également un bilatérien (- 700 millions d’années)

 

   Comme la plupart des animaux, l’homme présente uns symétrie bilatérale, c’est-à-dire qu’il possède un côté droit et un côté gauche. C’est à ce stade que l’ancêtre de l’homme se sépare des animaux qui ne sont pas bilatériens comme les éponges et les méduses.

 

 

 

Étape 4 : … un vertébré (-600 millions d’années)

 

   100 millions d’années plus tard apparaissent les vertébrés. Ces animaux sont dotés d’un squelette osseux ou cartilagineux qui assure une certaine rigidité à leur organisme. Leur

autre forme de protection : hémithorax chitinisé (carapace)

colonne vertébrale est l’endroit où est protégé le système nerveux central. Il s’agit évidemment d’une évolution majeure, résolue différemment par d’autres bilatériens comme les arthropodes (insectes, arachnides, crustacés) qui possèdent une carapace, les mollusques affublés quant à eux d’une coquille ou bien restent dépourvus de parties dures comme les vers. Il est à noter que les arthropodes sont de loin ceux qui possèdent le plus d’espèces et d’individus dans le monde du vivant : à titre d’exemple, les insectes sont approximativement au nombre de 1019 soit 10 milliards de milliards…

 

 

 

Étape 5 : … un tétrapode (-350 millions d’années)

 

   Il y a 350 millions d’années environ (une époque appelée le dévonien), une nouvelle différenciation va voir le jour avec l’apparition d’individus dotés de quatre membres par opposition aux poissons (pourtant vertébrés comme eux) dont ils se différencient. Font également partie de cette superclasse tétrapode : les reptiles, les dinosaures et les oiseaux. Ces tétrapodes ont une particularité : ils utilisent souvent une respiration pulmonaire qui est la conséquence (ou l’origine) de leur passage depuis la mer à la terre ferme, une des colonisations du vivant parmi les plus importantes de son histoire.

 

 

 

Étape 6 : … un amniote (- 310 millions d’années)

 

   Quelques millions d’années encore et la sélection naturelle va permettre le choix d’un avantage sélectif très important : la protection de l’embryon, futur être vivant à naître. Jusque là, il était pondu dans l’eau, milieu évidemment à risques. Dorénavant, une nouvelle enveloppe – utérus ou coquille – va le protéger du monde extérieur bien qu’il se développe toujours en milieu aqueux.

 

   Les amniotes sont des tétrapodes qui, grâce à cet acquis essentiel, peuvent réellement s’émanciper du milieu aquatique à la différence, par exemple, des grenouilles qui continuent à pondre dans l’eau. Différents groupes d’amniotes coexistent mais ce sont les dinosaures qui vont bénéficier d’une radiation évolutive, c’est-à-dire d’une évolution rapide et dominante à partir d’un ancêtre commun conduisant à un foisonnement d’espèces différentes sur l’ensemble du globe.

 

 

 

Étape 7 : … un mammifère (- 100 millions d’années)

 

   L’Homme fait partie des mammifères mais, à cette époque lointaine, ceux-ci vivent chichement : en raison de la domination sans partage des grands sauriens, ils sont

les mammifères dominèrent le monde... après les dinosaures

réduits à la portion congrue, sortes de petits rats insectivores essentiellement nocturnes : leur explosion radiative surviendra plus tard. Ils possèdent un certain nombre de caractéristiques qui leur seront très utiles par la suite : un système nerveux central, notamment encéphalique, relativement développé par comparaison avec les autres groupes, une température interne constante, énorme avantage lors des changements météorologiques (ensoleillement), un cœur possédant quatre cavités ce qui permet de mieux réguler l’oxygénation de l’organisme et leurs femelles ont des mamelles (d’où leur nom).

 

 

 

Étape 8 : … un euthérien (- 74 millions d’années)

 

   Les mammifères se divisent eux-aussi en sous-groupes, notamment celui des mammifères thériens qui regroupe les mammifères placentaires (auquel appartient l’Homme) et les mammifères marsupiaux, par opposition aux monotrèmes comme l’ornithorynque (mammifère pondant des œufs). Est appelé euthérien le groupe des mammifères placentaires qui protègent leur descendance jusqu’au stade de juvénile tandis que les marsupiaux (ou métathériens) ont des petits qui naissent bien plus tôt (au stade de larves dont le développement reste à faire en dehors du corps de la mère ce qui est moins protecteur). Dans un sujet déjà évoqué, nous avions d’ailleurs vu que, à chaque fois que les mammifères placentaires et marsupiaux se sont affrontés pour la possession d’un territoire, ce sont les placentaires qui ont pris le dessus, éliminant leurs rivaux assez rapidement. A l’exception notable du continent australien qui ne fut jamais (du moins jusqu’à très récemment) colonisé par les placentaires.

 

 

Étape 9 : … un primate (- 30 millions d’années)

 

   Les primates (de « premier ») forment un groupe au sein des mammifères placentaires. Il regroupe les petits singes, les lémuriens et les grands anthropoïdes dont certains donneront homo sapiens. Au début, ces primates étaient essentiellement arboricoles avant de recourir à la bipédie. Un primate est un plantigrade en ce sens qu’il marche sur la plante (toute la plante) des pieds et qu’il possède un pouce opposable. Son cerveau est développé et on cherche encore à savoir dans quelle proportion ce développement est à mettre au compte de la bipédie qui aurait libéré ses bras et notamment ses mains. Les lieux de prédilection des primates sont les régions tropicales ou subtropicales (seul l’homme moderne arrivera à coloniser tous les continents mais ce sera bien plus tard). Certains caractères leur sont propres comme le développement de la vision stéréoscopique et, pour certains, trichromatique (avec trois couleurs de base) au détriment de l’odorat qui est pourtant le système sensoriel dominant chez les mammifères.

 

   Les primates présentent également un dimorphisme sexuel ce qui veut dire que mâles et

dimorphisme sexuel chez le hurleur noir (mâle au centre)

femelles diffèrent par la corpulence, la taille des canines voire la coloration mais le trait essentiel de ces animaux, c’est la présence d’un plus gros cerveau comparativement à celui des autres mammifères. Signalons enfin, un trait qui a son importance : le développement des primates est plus lent que celui des autres mammifères ce qui sous-entend qu’ils seront matures plus tard (handicap ?) mais avec comme compensation une durée plus longue de vie.

 

 

 

Étape 10 : … un hominoïde (- 20 millions d’années)

 

   Les premiers singes africains datent d’environ 40 millions d’années contre 45 pour les plus anciens connus découverts en Chine. Il est encore difficile de comprendre dans quel sens est survenue cette migration. Ce n’est que plus tard que ces singes coloniseront les Amériques. Il y a 35 millions d’années, à la limite éocène-oligocène, une importante chute des températures se produit (environ 5 à 6° sur une durée de 500 000  ans ce qui est rapide à l’échelle de l’histoire de la Terre). Surnommée « la grande coupure » ce changement relativement brutal survient alors que la période précédente - qui avait duré plus de 25 millions d’années - avait été une des périodes les plus chaudes de l’ère géologique Ce changement climatique a forcément des conséquences sur la faune et la flore bien que celles-ci soient difficiles à retracer exactement. Le refroidissement va durer une  dizaine de millions d’années avant qu’un climat plus favorable aux primates s’établisse, avec notamment l’émergence d’une nouvelle superfamille, les hominoïdes. C’est le nom qui est donné par les scientifiques à de grands singes se différenciant des autres singes par la perte de leur queue. Cette famille comprend les gibbons, les orangs-outans, les gorilles, les chimpanzés et les humains.

 

 

 

Étape 11 : … un hominoïdé (- 16 millions d’années)

 

   Hominoïdés : c’est ainsi que l’on nomme le groupe précédent une fois qu’en ont été retirés les gibbons il y a 16 millions d’années ; ceux-ci diffèrent notablement des autres grands singes par leur taille plus petite, leur mode de vie arboricole pur avec usage d’un mode de locomotion par balancement d’un arbre à l’autre (brachiation) et ce, grâce à leurs très longs bras.

 

 

Étape 12 : … un hominidé (- 9 millions d’années)

 

   Lors de cette étape, ce sont les orangs-outangs (pongidés) qui sont séparés de la lignée principale des grands singes anthropomorphes (et donc du genre homo). Ne restent que chimpanzés, bonobos, gorilles et humains (au sens large du terme = homo). Durant très longtemps, les scientifiques influencés par leur époque ont cherché à séparer les grands singes anthropomorphes et l’Homme : pour des raisons philosophiques et religieuses, il ne paraissait alors pas possible de considérer l’Homme comme un grand singe dont le cerveau était simplement un peu plus développé que celui des autres grands singes. Heureusement, ces préjugés sont aujourd’hui abandonnés.

 

   Tous les spécialistes ne sont pas encore d’accord pour exclure les orangs-outangs du groupe des hominidés mais une chose est certaine : l’homme est bien un hominidé.

 

 

 

Étape 13 : … un homininé (- 7 millions d’années)

 

   C’est la dernière grande séparation du genre humain avec des espèces réellement

arbre phylogénétique de homo sapiens

différentes, en l’occurrence, ici, les gorilles. Sous-famille de la famille des hominidés, les homininés comprennent parmi les espèces survivantes les chimpanzés et les bonobos. De nombreuses espèces disparues relèvent également de cette sous-famille comme les australopithèques, les paranthropes, les ardipithèques ainsi que des fossiles encore à classer (Toumaï, Orrorin). Et, bien sûr, toutes les familles d’homo dont une seule a survécu : sapiens. Suite à la disparition de Neandertal, des hommes de Denisova et de Florès et (avant eux homo habilis, erectus, etc.), c’est curieusement les chimpanzés et les bonobos qui, quoique cousins relativement éloignés, sont nos plus proches parents.

 

   Dans ce groupe des homininés, n’importe quel observateur peut s’apercevoir des importantes différences existant entre un chimpanzé et un homme. D’ailleurs, ce dernier pratique une bipédie exclusive et, en sus d’un langage compliqué lui permettant de bâtir des concepts abstraits, son cerveau lui a permis de disposer d’outils de plus en plus élaborés. Néanmoins, d’un point de vue purement génétique, homo sapiens partage plus de 98% de ses gènes avec le chimpanzé (et 99,4 % si l’on ne retient que les 97 gènes fonctionnels des deux espèces).

 

 

 

Un long cheminement

 

   Pour en arriver à l’homme d’aujourd’hui et à sa domination sans partage sur la planète, il aura fallu du temps, beaucoup de temps. D’un organisme formé de quelques cellules agissant en synergie, on est arrivé aujourd’hui à la coexistence d’individus infiniment plus compliqués. Cette complexification s’est faite sous l’influence de la sélection naturelle, c’est-à-dire par ajustements progressifs aux variations de milieu, ces dernières étant le fruit du hasard. Certaines espèces n’ont pas pu s’adapter, soit qu’elles n’en portaient pas en elles la possibilité, soit que les transformations de leur écosystème apparurent trop vite pour qu’elles puissent réagir. Chaque fois, cette disparition, puisqu’elle laissait un vide, a été comblée par l’arrivée d’une autre forme de vie, dans une sorte de ballet sans cesse renouvelé.

 

   Vers la fin de sa vie, Darwin qui avait durant tant d’années réfléchi à la question, était arrivé à la conclusion que l’évolution de la Vie quelle qu’en soit la forme était sur Terre la conséquence de hasards multiples : catastrophes naturelles, volcanisme, glaciations, etc. De ce fait il ne croyait pas au progrès (si en vogue à l’époque) et ne pensait pas que la complexification évoquée plus haut était synonyme d’amélioration. D’ailleurs, nombre de formes de vie du passé et aujourd’hui disparues étaient aussi complexes et élaborées que les formes vivant de nos jours (si ce n’est plus).

 

   Dans le même ordre d’idée, si l’apparition d’homo sapiens est essentiellement due au hasard, il ne saurait être question de le considérer comme un but évolutif (comme certains

chimpanzés, les plus proches parents de l'homme

ont, peut-être par un orgueil mal placé, trop souvent tendance à le croire). L’homme moderne n’étant certainement pas un achèvement, d’autres étapes sont susceptibles d’intervenir avec l’apparition de formes de vie mieux adaptées aux changements de milieu (ceux-ci étant cette fois peut-être induits par le seul homo sapiens).

 

   Ces modifications majeures de notre cadre de vie commun – la Terre et ses ressources épuisables – se font malheureusement à la vitesse de l’éclair, sans que les espèces peuplant notre monde n’aient probablement le temps biologique nécessaire pour s’adapter. Nous évoquions un peu plus haut les conséquences considérables de la perte de 5°C en 500 000 ans à la fin de l’éocène, il y a 35 millions d’années, et voilà que certains scientifiques évoquent l’augmentation actuelle de 3°C en … cinquante ans ! Les chiffres sont sans appel.

 

   La sixième grande extinction de masse des formes vivantes n’a-t-elle pas déjà commencé ?

 

 

 

Sources

* encyclopaedia Britannica

* hominides.com (https://www.hominides.com/index.php)

* Science & Vie (https://www.science-et-vie.com/)

* Cosmovisions (https://www.cosmovisions.com/index.html)

* Wikipédia France / USA

 

Images

1. arbre général (sources : sites.google.com)

2. cellule eucaryote (sources :  ebiologie.fr)

3. carapace mygale (sources : pixabay.com)

4. mammifères (sources : pxhere.com)

5. dimorphisme sexuel chez le singe hurleur noir (sources : topito.com)

6arbre phylogénétique sapiens (sources : intra-science.anaisequey.com)

 

 

Mots-clés : sélection naturelle - ADN - arthropodes

 

 

Sujets apparentés sur le blog

1. les extinctions de masse

2. placentaires et marsupiaux, successeurs des dinosaures

3. spéciations et évolution des espèces

4. la sélection naturelle

5. le dernier ancêtre commun

6. la bipédie, condition de l'intelligence ?

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

Mise à jour : 23 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans : #Évolution, #paléontologie
archéoptéryx : dinosaure volant ou oiseau véritable ?

 

 

 

   Le mot « dinosaure » a été formé à partir du grec ancien δεινός / deinόs (« terriblement grand ») et σαùρος / saûros (« lézard »). C’est dire que, dès la découverte des premiers fossiles de ces animaux, les scientifiques avaient avant tout suspecté une relation entre eux et les reptiles. D’ailleurs, ces bêtes énigmatiques pour l’époque étaient également appelés « grands sauriens », saurien désignant un reptile comme le lézard ou le caméléon. Il faut dire que les squelettes immenses, parfois reconstitués avec difficulté, « donnaient l’impression » de rappeler quelque part la classe des reptiliens. On ne possédait alors pas d’éléments décrivant l’aspect extérieur des dinosaures, s’ils portaient des écailles ou des plumes, quels étaient leurs comportements réels, etc. Aujourd’hui, notamment avec les extraordinaires fossiles récemment mis au jour en Chine, on en sait un peu plus et le problème de l’origine des grands sauriens semble plus complexe que prévu…

 

 

 

Les différentes lignées de dinosaures

 

   Peu après leur apparition il y a 225 millions d’années, les

saurischien sauropode

dinosaures se séparent en deux branches : les saurischiens et les ornithischiens. La différence entre ces deux groupes est d’ordre anatomique : les premiers, les saurischiens (herbivores ou carnassiers), ont un bassin de lézard (pubis orienté vers l’avant) tandis que les ornithischiens (herbivores) ont un bassin comme celui des oiseaux (pubis vers l’arrière) d’où leur autre nom d’avipelviens. Les saurischiens se divisent à leur tour en deux familles différentes, les sauropodes (herbivores)

saurischien théropode

et les théropodes (carnassiers). Or - et c’est ici que se situe un paradoxe - on est pratiquement certain aujourd’hui que les oiseaux, seuls descendants des dinosaures, se sont formés à

partir des théropodes (les dinosaures qui avaient primitivement un pubis de lézard) : nous aurons l’occasion d’y revenir.

 

 

Première piste : l’archéoptéryx, oiseau archaïque ?

 

   Le premier fossile d’archéoptéryx a été découvert en 1876 en Allemagne (plus précisément sur le site de Blumenberg près de Eichstätt). D’emblée, il pose un problème aux scientifiques puisqu’ils s’interrogent : a-t-on affaire à un oiseau très archaïque ou encore à un dinosaure volant à plumes ? Quelques « spécimens » supplémentaires plus tard, il semble bien que nous soyons face à un animal de transition entre dinosaures et oiseaux. Ayant vécu à la fin du Jurassique, il y a environ 150 millions d’années, archéoptéryx était semble-t-il capable de voler mais s‘agissait-il d’un simple vol plané (en s’élançant par exemple d’un arbre ou d’une hauteur) ? Des études récentes (2017) semblent prouver qu’il était capable de battre des ailes

premier fossile d'archéoptryx découvert en Allemagne

pour voler, probablement pas à la manière des oiseaux actuels mais plutôt comme les nageurs de brasse-papillon. Son anatomie lui interdisait également de décoller comme les oiseaux modernes mais, après tout, de nos jours, c’est aussi le cas de l’albatros qui arrive pourtant bien à quitter le sol après une course parfois approximative…

 

   Archéoptéryx était couvert de plumes dont on a récemment démontré qu’elles étaient noires. Il possédait nombre de caractères le rapprochant des dinosaures théropodes comme, entre autres, des ailes pourvues de trois doigts griffus, un museau « très dinosaurien », une mâchoire avec des alvéoles renfermant des dents pointues, loin évidemment des becs cornus des oiseaux actuels.

 

   La paléontologie chinoise, en plein essor grâce à des sites de fossiles à la conservation remarquable, a récemment apporté une réponse avec la découverte de nouveaux spécimens d’archéoptéryx et apparentés (anchiornis). Les scientifiques purent ainsi mettre en évidence chez ces individus le museau assez plat et des régions postérieures aux orbites assez étendues : absents chez les oiseaux, ces caractères morphologiques sont ceux que l’on connait chez les vélociraptors et autres microraptors et, de ce fait, notre archéoptéryx retrouve, 150 ans après sa découverte, son statut vraisemblable, non pas d’oiseau mais de dinosaure volant.

 

 

Les ancêtres des oiseaux : les maniraptoriens

 

   Il y a quelques années, en cherchant à « systématiser » l’origine des oiseaux, les scientifiques se sont particulièrement intéressés à un groupe (clade) bien particulier de dinosaures

maniraptorien (ici, microraptor)

théropodes nommés maniraptoras (« mains préhensiles ») qui vivaient au Jurassique et au Crétacé (et qui incluait les vélociraptors). Pourquoi ? parce que ces dinosaures présentent des caractéristiques très particulières qui, comme on va le voir, les rapprochent de ce que deviendront les oiseaux.

 

          * les maniraptoriens ont de longs bras et mains, des plumes, une queue raide et un pubis allongé pointant vers l’arrière (caractéristique des oiseaux)

 

          * leur système respiratoire est porteur de propriétés typiquement aviaires. Pour comprendre, revenons un instant sur la manière de respirer des oiseaux. Ceux-ci ne respirent pas comme les mammifères : l’air entre de façon continue dans leurs poumons dont la structure est capillaire et non alvéolaire. Pas d’alvéoles, certes, mais des sacs aériens dont certains s’infiltrent dans les os (qui sont creux ce qui allège considérablement le vol). Au repos (et durant le sommeil), les poumons varient en amplitude mais sont bloqués durant le vol. Cette synergie poumons-sacs aériens autorise les énormes besoins en énergie demandés par le vol. De plus, le système permet également une température corporelle constante, plus élevée que chez les mammifères. Eh bien, les maniraptoriens sont les seuls dinosaures possédant un système respiratoire voisin (bréchet et sternum étant remplacés par des côtes supplémentaires dans leur abdomen).

 

          * les plumes : les rémiges (grandes plumes des ailes des oiseaux aussi appelés pennes) ont été identifiés chez certains maniraptoriens (dont les vélociraptors, n’en déplaise à « Jurassic Park »). Or, la plupart de ces dinosaures ne volaient pas ce qui laisse supposer une fonction différente pour les plumes : camouflage probablement, sélection sexuelle, peut-

velociraptor

être, comme on l’a déjà noté dans ce blog pour bien des oiseaux ou, plus simplement encore, protection contre la perte de chaleur ce qui laisserait alors supposer qu’ils étaient homéothermes, qu’ils avaient le sang chaud. Du coup, la réutilisation ultérieure des plumes pour une autre fonction (le vol) est ici une exaptation, c’est-à-dire, selon Stephen J. Gould, une adaptation sélective différente de la fonction initialement prévue.

 

   Les arguments en faveur de la transformation d’un sous-groupe de théropodes, les maniraptoriens, en oiseaux semblent donc assez solides.

 

 

Des dinosaures…

 

   Le règne des dinosaures a pris fin, au crétacé, il y a 66 millions d’années lorsqu’un astéroïde gigantesque vint frapper la presqu’île du Yucatan, au Mexique, et supprima la presque totalité de la vie de notre planète : ces animaux auront donc exercé leur supériorité sur le reste du vivant durant plus de cent-soixante millions d’années. 160 millions d’années  ! Voilà un chiffre qui n’est pas facile à visualiser lorsqu’on a déjà du mal à comprendre ce que représente sur Terre la présence de l’homme moderne, un peu plus de 5000 ans. On peut dire autrement : l’homme moderne a vécu 0,003% de la durée de la présence des dinosaures sur Terre… Ce rappel des durées immenses qui nous séparent du crétacé n’est pas anodin : il permet de concevoir comment, peu à peu, sous la pression de la sélection naturelle, d’avantages sélectifs en avantages sélectifs, certains dinosaures ont pu se perpétuer en changeant totalement de forme pour devenir le groupe abondant et diversifié des oiseaux.

 

 

…aux  oiseaux (petit rappel)

 

   Les oiseaux forment la classe des Aves. Ce sont des animaux

Gros Bec de Guyanne : des espèces d'oiseaux...

vertébrés, à quatre membres dont deux sont des ailes ce qui permet (pour l’immense majorité d’entre eux) le vol. En 66 millions d’années (depuis la météorite de la fin du crétacé), ils ont eu le temps d’apparaître, de s’adapter et de se diversifier puisqu’on compte près de 10 500 espèces d’oiseaux recensées (en 2016).

 

   Ils possèdent en commun, à différents degrés variés, des plumes ou des écailles cornées (ou les deux), une mâchoire dépourvue de dents (contrairement à l’archéoptéryx) mais enveloppée d’une gaine cornée formant un bec, une queue courte et, surtout, des membres antérieurs transformés en ailes (le

... fort différentes (ici, un serin européen)

plus souvent fonctionnelles mais pas toujours) ainsi que des pattes arrières qui sont seules à permettre la progression au sol ou dans l’eau. Ils sont par ailleurs homéothermes. Enfin,

caractère à ne pas oublier, ils sont tous ovipares ce qui veut dire qu’ils pondent des œufs entourés d’une fine coquille que les parents devront couver un certain temps pour assurer le développement de leur progéniture.

 

 

Une transformation aviaire sur une très longue durée

 

   Longtemps on a cru que, dans le règne animal, les oiseaux étaient une sorte d’intermédiaire entre les reptiles et les mammifères.. On sait aujourd’hui qu’il ne s’agissait que d’une hypothèse qui arrangeait notre ignorance. La phylogénétique moléculaire nous apprend que le groupe actuel le plus proche de celui des oiseaux est le groupe des crocodiliens.

 

   La paléontologie laisse supposer, avec, on l’a dit, des arguments plutôt convaincants, que ce sont en fait des dinosaures théropodes qui ont donné naissance aux oiseaux, et plus particulièrement le groupe des maniraptoriens (voir plus haut dans le texte).

 

   Une discipline spécialisée de la biologie évolutive appelée néontologie a étudié l’anatomie comparée des oiseaux pour en déterminer l’évolution récente et ses conclusions vont dans le même sens. De son côté, la cladistique (qui est, rappelons-le, la reconstruction des relations de parentés entre les êtres vivants au moyen de « cellules » appelées clades dans lesquels les individus retenus sont plus apparentés entre eux qu’avec n’importe quel autre groupe) a également conclu que les oiseaux sont bien issus des dinosaures théropodes.

 

   La transformation dinosaures-oiseaux s’est faite au cours des millions d’années qui nous séparent du crétacé et, comme pour les humains, il n’y a pas de chaînon manquant (voir l’article : le mythe du chaînon manquant). Cela veut dire que, progressivement, avec parfois des retours en arrière et des

derniers descendants carnivores des théropodes : ici, un aigle royal

périodes de stase, de plus en plus de caractéristiques aviaires sont apparues chez des dinosaures de moins en moins « sauriens ». Une fois l’essentiel réuni, lorsque les propriétés anatomiques principales des oiseaux furent suffisamment présentes, ce fut une explosion évolutionnaire et la diversification que nous connaissons. Comme pour les humains donc, il n’y a pas un « ancêtre » commun à tous ces oiseaux mais des espèces et des individus porteurs progressivement de plus en plus de caractéristiques aviaires. Cette « aviarisation » de certains dinosaures théropodes a commencé bien avant la catastrophe du crétacé et a permis à cette branche très particulière de résister à la grande extinction qui emporta tous leurs cousins. Ce que l’on ne sait pas, en revanche, c’est la raison de cette survie lors de la catastrophe : simple bonne fortune donc hasard ou déjà adaptation à des circonstances nouvelles ? On pourrait se poser la même question pour d’autres survivants (je pense par exemple aux crocodiliens).

 

   Les grands sauriens ont, durant des millions d’années semble-t-il, bridé l’expansion des mammifères et il aura fallu attendre la disparition des plus agressifs et volumineux d’entre eux pour que cette libération se produise. Dans le même temps, on peut également avancer que d’autres dinosaures - les oiseaux - n’ont pas empêché la diffusion radiative des mammifères tout en réussissant leur occupation d’un écosystème très important. On peut en retenir que la nature est toujours une notion d’équilibre ce que certains humains, de nos jours, semblent oublier… à leurs risques et périls.

 

 

Brève 1 : les plumes avant le vol !

 

   Depuis la découverte de dinosaures à plumes en Chine, il est établi que les oiseaux sont issus des dinosaures théropodes. Les nombreux fossiles de ces animaux révèlent que les plumes sont apparues d’abord sous forme de duvets colorés, utiles pour préserver la chaleur du corps et s’attirer l’intérêt des femelles. La capacité de voler n’est venue qu’après, au terme d’une lente et profonde modification de la morphologie des dinosaures aviens.

   Zhenyuanlong est un dinosaure à plumes découvert à Jinzhou, en Chine. C’est l’un des nombreux fossiles découverts récemment qui montrent que les dinosaures théropodes ont longuement évolué avant même l’apparition de la capacité à voler.

   Rendre le vol possible, séduire une femelle ou intimider un rival, retenir la chaleur corporelle, protéger les œufs pendant la couvaison… Les plumes ont tant d’usages qu’il a été difficile de comprendre quelle fut leur première fonction.

  La transition entre dinosaures et oiseaux a couru sur des dizaines de millions d’années d’évolution. Elle a été si progressive qu’il n’existe pas de distinction claire entre « oiseaux » et « non-oiseaux ».

(Pour la Science, Hors-Série n°119, mai-juin 2023)

 

 

Sources

 

1. wikipedia.org

2. jurassic-world.com

3. futura-sciences.com

4. lefigaro.fr

5. chine.in (Chine Informations)

6. dinosauria.com

 

 

Images

 

1. archéoptéryx (dkfindout.com) 

2. sauropode (sources : petitcarnetpaleo.blogspot.com)

3. théropode (sources : gallimard-jeunesse.fr)

4. archéoptéryx, spécimen dit de Berlin (sources : commons-wikimedia.com)

5. maniraptorien (microraptor) (sources : slideplayer.fr)

6. velociraptor (sources : famouscutouts.com)

7.gros bec de Guyane (sources : lejournal.cnrs.fr)

8. serin d'Europe (sources : jmrabby.oiseaux.net)

9. aigle royal (sources : champagne-ardenne.lpo.fr)

 

 

 

Mots-clés : saurischiens et ornithischiens - archéoptéryx - anchiornis - vélociraptors - exaptation - phylogénétique moléculaire - cladistique

 

 

 

Sujets apparentés sur le blog

 

1. le mythe du chaînon manquant

2. l'empire des dinosaures

3. la disparition des dinosaures

4. les mécanismes de l'Évolution

5. la sélection naturelle

6. retour sur la théorie de l'Évolution

7. la notion d'espèce

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

 

mise à jour : 11 mars 2024

Voir les commentaires

Publié le par cepheides
Publié dans : #Évolution

 

"l'origine des espèces", édition originale

 

 

 

   Au moment où j’écris ces lignes, le blog comprend 148 articles dont plus de 60 ont trait à la théorie de l’Évolution, la grande majorité de ces derniers concernant les mécanismes et les conséquences de ces lois. Quelques lecteurs m’ont demandé de chercher à réunir de la façon la plus synthétique possible ces différents éléments dans un article qui permettrait d’avoir une perspective plus globale de l’Évolution : c’est ce que je vais essayer de faire aujourd’hui. Je ne manquerai bien sûr pas de mentionner les références des articles plus spécialisés au fur et à mesure de l’avancée du texte.

 

 

   Avant les travaux de Charles Darwin, les réponses données à la présence de l’Homme sur Terre étaient simples et rassurantes : le monde était créationniste et il était inchangé

Châteaubraind âgé
Chateaubraind vers la fin de sa vie

depuis sa formation quelques milliers d’années plus tôt par Dieu ; les êtres vivants existent tels quels une fois pour toutes et rien ne peut les modifier. Jamais. Les fossiles retrouvés par hasard ? Un moyen divin de tenter l’Homme et de s’assurer de la profondeur de sa foi : même le grand écrivain que fut Chateaubriand adhérait pleinement à cette approche (« Si le monde n’eût été à la fois jeune et vieux, le grand, le sérieux, le moral, disparoissoient de la nature, car ces sentiments tiennent par essence aux choses antiques. Chaque site eut perdu ses merveilles. » Chateaubriand, le génie du Christianisme, chapitre V, jeunesse et vieillesse de la Terre). Avant lui, en 1650, James Ussher, archevêque anglican, avait même calculé que notre planète avait été créée dans la nuit précédent le dimanche 23 octobre 4004 avant J.C. (calendrier Julien).

 

   C’est dire que Darwin savait qu’il allait profondément déranger bon nombre de ses contemporains et c’est d’ailleurs la raison pour laquelle il hésita de nombreuses années avant de publier son ouvrage princeps « de l’origine des espèces »  (1859).

Charles Darwin (1809-1882)

Il était pourtant sûr de lui, après avoir passé des années à observer des centaines d’espèces vivantes tant animales que végétales ; il en était arrivé à une conclusion simple et indiscutable : il existe des modifications chez les êtres vivants qui se transmettent de génération en génération et ces changements avantagent ou désavantagent ceux qui en sont porteurs de sorte que s’opère un « tri » : c’est la sélection naturelle.

 

   On comprend aisément que, à l’époque de Darwin, des pans entiers de la science étaient totalement inconnus : Darwin, par exemple, se demandait comment les caractères apparus chez certains individus pouvaient se transmettre à ses descendants, les travaux de Mendel et la génétique étant totalement inconnus. Il faudra des décennies pour que des réponses satisfaisantes soient apportées, renforçant à chaque fois la théorie de Darwin, en la modifiant techniquement en fonction de l’avancée des connaissances… mais sans jamais en remettre en cause l’esprit.

(voir le sujet : le voyage du Beagle et ses conséquences)

 

 

 

La « révolution » darwinienne repose sur trois points…

 

 

   * Le premier est facilement compréhensible : il existe un ancêtre commun (le premier être multicellulaire) à toutes les espèces vivantes et c’est à partir de lui que se sont diversifiées les espèces, parfois de façon stupéfiante (quel rapport apparent existe-t-il entre une mouche et un corail à part le fait que tous deux sont vivants ?). Puisque, par ailleurs, on peut mettre en évidence des fossiles d’êtres vivants nous ayant précédés mais disparus depuis longtemps, il faut bien que la Terre soit plus vieille que ce que l’on prétendait alors. Les travaux du géologue Lyell qui inspirèrent Darwin parlaient de centaines de millions d’années et, pour le scientifique anglais, c’était bien le minimum. Hélas, l’autorité morale en physique de l’époque qu’était Lord Kelvin avait ruiné les espérances de Darwin après avoir calculé que la Terre ne pouvait exister que depuis 20 à 40 millions d’années sinon elle serait complètement froide. Les Darwiniens étaient certains qu’il se trompait mais sans pouvoir en apporter la preuve. Il fallut attendre Rutherford et la mise en évidence de la radioactivité terrestre pour apporter une réponse : 4,5 milliards d’années ce qui est bien suffisant pour l’éclosion et le développement de la vie actuelle.

(voir le sujet : la querelle sur l'âge de la Terre)

 

 

   * Le deuxième point stipule que des variations lentes et progressives sont à l’origine de la transformation des espèces au cours du temps. En réalité, Darwin ne fait que reprendre ici à son compte ce que les transformistes comme Buffon, Lamarck ou Geoffroy Saint-Hilaire avaient déjà postulé en étudiant les fossiles. Il pense lui aussi que ces transformations se transmettent de génération en génération : c’est ce qu’il avait déjà noté en étudiant les espèces domestiquées par l’Homme (élevages) et qu’il retrouve dans la Nature pour les espèces sauvages quoique à un rythme bien plus lent.

(voir le sujet : le rythme de l'évolution des espèces)

 

 

   * Mais ce qui fait la véritable originalité des travaux de Darwin, c’est l’introduction d’une notion fondamentale pour l’évolution des espèces : la sélection naturelle.

 

   Inspirée de l’ économie (notamment des travaux de Malthus), la sélection naturelle explique pourquoi certains individus (et donc certaines espèces) sont favorisés par rapport à d’autres. Suite à une mutation spontanée dont l’expression est le plus souvent facilitée par une modification de l’environnement où ils vivent, quelques individus sont effectivement mieux armés pour survivre : on parle alors d’avantage sélectif. De ce fait, ils auront plus de descendants que leurs congénères « non mutés » et, peu à peu, leur population en arrivera à supplanter la population d’origine.

(voir le sujet : la sélection naturelle)

 

 

 

 

   Cette sélection naturelle peut prendre un autre aspect : celui de la sélection sexuelle qui complète les pressions de sélections environnementales en ce sens que c’est alors la femelle (exceptionnellement l’inverse) qui va choisir le mâle porteur des gènes les plus favorables selon des critères physiques et/ou comportementaux instinctuels parfois très élaborés.

(voir sujet : reproduction sexuée et sélection naturelle)

 

 

…mais des questions restent sans réponses

 

 Si Darwin comprend bien qu’il existe des modifications des espèces qui s’imposent au fil du temps, il est bien incapable de comprendre par quels mécanismes, la génétique restant à son époque complètement inexistante. Pourquoi et comment l’avantage évolutif, fondement de la théorie, peut-il être transmis du parent à l’enfant ? Mystère pour l’époque.

 

Un autre aspect de la pensée darwinienne reste flou : celui de la notion d’espèce. L’espèce est un concept qu’on peut à la limite comprendre assez aisément de façon intuitive mais qui, d’un point de vue strictement scientifique, reste plutôt flou. Comment le définir ? Pour reprendre un exemple facile, pourquoi sait-on qu’un chihuahua est un chien et appartient donc à la même espèce qu’un Saint-Bernard et non pas à celle d’un chat dont il est morphologiquement plus proche ? L’absence de l’explication génétique est encore une fois fort perturbante.

 

Autre problème majeur: qu’en est-il du rythme évolutif des espèces ? Est-il lent et progressif comme le pense Darwin ou, au contraire, rapide et par à-coups ce que laisserait supposer l’absence de découverte des fossiles « intermédiaires » montrant les infimes modifications successives ? Il n’y a pas de réponse claire et les ennemis du savant anglais se font fort de le lui rappeler.

 

Enfin, un dernier point fait débat : la sélection naturelle porte-t-elle uniquement sur les individus ou concerne-t-elle d’autres niveaux de la Vie, comme les groupes ou même les espèces dans leur globalité ?

 

En ce milieu du XIXème siècle, la science n’est pas en mesure de répondre à ces questions pourtant fondamentales. Il faudra attendre le siècle suivant pour commencer à y voir plus clair.

 

 

 

Les progrès de la science apportent des réponses

 

 

* Les lois de l’Hérédité

 

   C’est la connaissance de ces lois qui manqua si cruellement à Darwin mais le décryptage de la génétique ne se fit pas d’un seul coup, tant s’en faut. On peut résumer ces acquis selon quatre étapes.

 

          Il y eut d’abord les travaux précurseurs de Mendel…

Le moine tchèque travaillait sur des pois et observa ce que donnaient les croisements des différentes espèces de ces végétaux. Vers 1850, il en tira trois lois qui expliquaient de façon précise les principes de l’hérédité biologique qui permet un transfert des caractères des parents vers les descendants

Gregor Mendel (1822-1884)

. Curieusement, la découverte par Mendel des lois de l’hérédité eurent lieu du vivant de Darwin : ce dernier avait même reçu un tiré-à-part des travaux de Mendel mais, malheureusement, il ne le lut pas. Deuxième rendez-vous manqué : Mendel vint à Londres en 1862 mais n’eut pas l’occasion de rencontrer Darwin dont il connaissait pourtant les travaux… La découverte du Tchèque, capitale, ne fut pas exploitée et tomba dans l’oubli jusqu’en 1900 où elle fut enfin reconnue.

 

          … puis les travaux d’August Weissman, un médecin et biologiste allemand, qui consacra la plus grande partie de sa vie à démontrer l’impossibilité de la transmission des caractères acquis avant de conclure que le seul moyen de transmettre une information d’un parent à son descendant reposait sur la continuité du « plasma germinatif » ou, dit autrement, que les organismes pluricellulaires sont constitués de cellules germinales contenant l’information héréditaire (appelé aujourd’hui génome) et de cellules somatiques pour les fonctions vitales. C’était un immense pas en avant puisque prouvant le support matériel de l’hérédité.

 

            En 1901 la notion de mutation est pour la première fois exprimée par le botaniste néerlandais Hugo de Wries qui défend alors la conception darwinienne de la sélection naturelle. Quelques années plus tard, en 1909, Wilhelm Johannsen, évoque la notion de gène et propose de la définir de manière purement opérationnelle par rapport à la combinatoire mendélienne. Il ne reste donc plus qu’à découvrir la nature physique de ces gènes dont on ignore encore tout.

 

          Il faudra attendre 1953 pour que Watson et Crick découvrent la structure physico-chimique de la molécule supportant ces gènes, l’ADN, et la structure en double hélice des chromosomes. Le code génétique permettant aux cellules de déchiffrer les séquences de gènes et donc de construire les molécules nécessaires à la vie cellulaire est finalisé en 1961 (Nirenberg et Matthael)

 

   On imagine la joie qu’aurait ressentie Darwin de voir enfin élucidé le moyen de transmettre les informations d’un individu à son descendant, lui qui n’avait fait que le supposer.

 

 

* Autre point épineux : Darwin nous dit que les espèces se transforment au cours du temps mais qu’est-ce qu’une espèce ?

 

   Lors de son passage aux îles Galápagos, Darwin avait observé l’évolution des colonies de pinsons : selon les îles qu’ils occupaient, ces oiseaux s’étaient diversifiés (notamment par la forme de leurs becs) en fonction des sources de nourriture dont ils disposaient. Jusqu’à devenir incapables d’avoir une descendance commune : une population auparavant homogène avait donné naissance à des espèces différentes. On appelle ce phénomène spéciation (ici géographique).

 

   Le fait de ne pas pouvoir engendrer de descendants est-il donc la caractéristique principale qui différencie deux espèces ? C’est ce que le biologiste Ernst Mayr (1904-2005) pensait : pour lui, le critère d’interfécondité est primordial et le fait de ne pouvoir obtenir une descendance marque

le tigron n'est pas une espèce car il ne peut se reproduire

l’appartenance à deux espèces différentes. Et cela même si ces espèces sont encore suffisamment proches pour engendrer des descendants non fertiles comme l’âne et le cheval (donnant un mulet ou un bardot) ou une lionne et un tigre enfantant un félin hybride appelé tigron…

 

   Darwin s’exerça à tracer un arbre généalogique des espèces qui, bien entendu, n’est plus de mise à présent avec la génétique moderne. Continuant sur la lancée d’un Linné, créateur d’une première approche dite « systématique », la taxinomie a cherché à regrouper les espèces en fonction de leurs ressemblances : l’unité conceptuelle de base est le taxon, censé identifier tous les individus ayant certains caractères en commun. Il s’agit pourtant là d’une classification parfois arbitraire, de nombreux taxons associant des espèces fort disparates. Surtout si l’on songe que certaines « ressemblances »  peuvent être fortuites, celles-ci étant le fait d’évolutions totalement indépendantes (on parle alors de convergence évolutive).

 

   On a donc également recours à la cladistique, un clade étant un taxon qui ne regroupe que les individus dont on est certain qu’ils possèdent un caractère hérité d’un ancêtre commun.

 

   Du coup, « l’arbre » généalogique des espèces s’est transformé en un buisson touffu mais une chose est aujourd’hui certaine : il n’existe aucun « sens » historique préétabli ou de marche vers un quelconque « progrès ». L’Évolution des différentes espèces se fait en parallèle, en fonction des variations des conditions de survie :  dans cette optique, homo sapiens n’est qu’un animal parmi d’autres.

(voir sujet : la notion d'espèce)

 

* Troisième point ayant posé problème : le rythme de l’Évolution

 

   Darwin attendit toute sa vie, la découverte des fameux « fossiles intermédiaires », ceux qui auraient pu montrer les infimes modifications d’avec les espèces originelles prouvant le caractère lent et constant de leur évolution. Déjà du temps du savant anglais, certains de ses plus fervents admirateurs avaient quelques doutes. En effet, quand on observe bien les fossiles retrouvés, on distingue des individus qui restent inchangés durant des millions d’années puis qui, d’un seul coup, disparaissent sans que l’on puisse retrouver des formes de transition.

 

   Aujourd’hui, on sait que Darwin avait partiellement tort sur ce point précis des lois de l’Évolution : la vitesse de transformation des espèces n’est pas constante. En 1972, Stephen J. Gould et Niles Eldridge avancèrent l’hypothèse que l’Évolution n’est pas minime et régulière mais qu’elle procède par soubresauts, associant de longues phases d’immobilisme - dites de stagnation - à des épisodes de transformations rapides (portant au plus sur quelques milliers d’années). Cette approche est appelée la « théorie des équilibres ponctués ».

 

   Plus radical encore fut avancé le saltationnisme qui tablait sur la possibilité de « sauts » immenses transformant complètement l’espèce en une autre, par exemple avec l’apparition de membres ou d’organes surnuméraires. La communauté scientifique resta longtemps assez peu réceptive à ces idées plutôt iconoclastes avant que ne soit connue, dans les années 1980, l’existence de « gènes architectes » susceptibles d’entraîner des bouleversements majeurs dans l’organisation de l’embryon.

 

   En réalité, comme souvent dans le domaine des sciences, il n’existe pas de réponse unique. Tout dépend de l’espèce considérée : certaines sont inchangées depuis toujours à la façon du cœlacanthe, ce poisson qualifié de « fossile vivant » puisqu’on le croyait disparu depuis des millions d’années et qui

coelacanthe

fut retrouvé identique à ses lointains ancêtres il y a quelques décennies ; d’autres espèces se transforment presque continuellement : il n’est que de se souvenir des mutations quasi-permanentes des bactéries pour échapper à l’agressivité des antibiotiques à leur égard.

 

   Si l’on peut penser que les transformations radicales du saltationnisme restent marginales, il est tout à fait vraisemblable que modifications brutales et subites (équilibres ponctués) s’associent aux variations progressives s’étendant sur des laps de temps plus étendus comme le pensait Darwin. Cette sorte d’équilibre entre les deux mécanismes principaux doit d’ailleurs varier sensiblement en fonction des espèces étudiées sans que l’on puisse dégager une explication précise propre à chacune d’entre elles.

(voir les sujets : le rythme de l'évolution des espèces et la théorie des équilibres ponctués)

 

   Avec l’idée de sélection naturelle, Darwin avait trouvé la raison principale de la transformation des espèces. Toutefois, le savant anglais pensait essentiellement à la sélection des individus constituant une espèce mais, en réalité, la notion est bien plus vaste. Si vaste qu’il n’est guère de domaine où l’on ne puisse l’appliquer. Du coup, on se demande s’il n’existe pas d’autres niveaux de l’Évolution visés par la sélection naturelle. Et se poser la question, c’est presque y répondre…

 

 

 

Où s’exerce réellement la sélection naturelle ?

 

   Pour Darwin, la cible privilégiée et peut-être unique de la sélection naturelle est l’individu : porteur d’un avantage sélectif, celui-ci survivra plus facilement, se reproduira plus aisément et sa descendance finira par transformer toute l’espèce. Cette approche est restée longtemps la seule à être reconnue avant que certains scientifiques ne proposent un autre niveau d’action.

 

   Sans remettre en cause la sélection naturelle individuelle, une autre approche consiste en effet à s’intéresser aux groupes auxquels appartiennent les dits-individus. L’étude notamment des insectes sociaux comme les fourmis ou les abeilles permet de percevoir que la sélection naturelle - et donc in fine l’Évolution - agit à un autre niveau. Concernant les fourmis, par exemple, il est certain que l’individu n’a guère d’importance

une fourmi n'est rien : seule compte la fourmilière

puisque, isolé, il est amené à disparaître : la force de l’espèce, c’est la fourmilière. Un avantage sélectif n’est d’aucune utilité à l’individu seul mais, une fois sélectionné, concernera les actions et le devenir de l’ensemble de la communauté. Vu sous cet angle, la sélection naturelle s'applique donc bien plus au groupe qu'à l’individu, ce groupe qui possède en réalité une puissance d’action bien supérieure à celle de la somme de chacun de ses composants.

(voir sujet : insectes sociaux et comportements altruistes

 

    Certains sont allés encore plus loin : Stephen J. Gould, « l’inventeur » des équilibres ponctués, se demandait quant à lui si la sélection naturelle ne concernait pas tout simplement certaines espèces dans leur ensemble, par exemple, lors d’une compétition pour une même niche écologique. D’autres, à l’instar du biologiste et éthologiste Richard Dawkins propose, non sans malice, qu’il faut considérer la sélection naturelle au niveau du gène, l’individu n’étant en quelque sorte que l’enveloppe charnelle destinée à le protéger.

(voir sujet : la sélection naturelle)

 

   Quoi qu’il en soit, on peut raisonnablement avancer que l’individu, par la modification de quelques uns de ses gènes, est le porteur de la transformation de son espèce et ce quel que puisse être le niveau d’application final de la sélection naturelle. Une question néanmoins reste en suspens : la transformation d’une espèce est-elle toujours une amélioration de celle-ci ? A-t-on le droit de dire que l’évolution conduit obligatoirement à un perfectionnement, qu’ elle est en somme une source de progrès ?

 

 

 

Un terme à proscrire, celui de « progrès »

 

   Darwin écrivit le 4 décembre 1872 au paléontologiste américain Alpheus Hyatt : « Après mûre réflexion, je ne peux m’empêcher de penser qu’il n’y a pas de tendance au progrès. »

 

   Contrairement à une idée couramment admise, l’Évolution des espèces ne représente pas un « progrès », une sorte d’amélioration qui tendrait vers un idéal hypothétique. La sélection naturelle explique seulement comment les organismes se modifient au fil du temps en cherchant à s’adapter au modifications de leur milieux locaux. Elle permet simplement aux espèces de survivre lorsque leur environnement change (et ce, à la condition que ces changements ne soient quand même pas trop rapides). Au-delà de tout ce qu’apportait sa théorie, Darwin considérait que ce rejet du progrès au profit de simples ajustements ponctuels à des changements de conditions était la partie la plus fondamentale et la plus radicale de ses travaux.

 

   Aucune autre théorie que l’approche Darwinienne ne peut expliquer aussi bien les observations du monde du vivant et son évolution au long des millions d’années de sa présence sur notre planète.

sans la météorite qui s'abattit il y a 65 millions d'années sur le Mexique, nous ne serions pas là...

    Cette évolution relève évidemment du hasard puisque les événements qui provoquent l’adaptation des espèces à leurs milieux sont imprévisibles. Le hasard ? Ou, dit autrement, le déterminisme de la matière, plutôt, qui est sa strate cachée. Mais l'incertitude au bout du compte rendant impossible toute prévision d’avenir, en tout cas pour la matière vivante. La meilleure illustration en est la météorite du Yucatan qui, en détruisant le monde des dinosaures, permit l’essor des mammifères et des millions d’années plus tard l’apparition d’homo sapiens : une trajectoire légèrement différente de l’objet exterminateur et nous ne serions pas là pour en discuter.

 

   Des milliards de milliards petits événements, de petits hasards ont fait du monde ce qu’il est aujourd’hui : comme le dit fort bien Gould, « si l’on pouvait rembobiner le film de l’évolution de la vie jusqu’à ses débuts à l’époque du schiste de Burgess et recommencer son déroulement à partir du même point de départ, il y aurait bien peu de chances pour que quelque chose de semblable à l’intelligence humaine vienne agrémenter la nouvelle version de l’histoire. »

 

 

   L’immense mérite de Darwin a été de nous permettre de comprendre, au-delà des mythes et des préjugés, ce qu’a été l’évolution du vivant sur cette Terre. L’idée, dit-on, était dans l’air du temps et d’autres auteurs étaient proches de publier des travaux voisins du sien mais c’est bien à lui que l’on doit une publication « l’origine des espèces » qui a changé à jamais la Science. Et la compréhension du monde dans lequel nous vivons.

 

 

 

 

Sources :

1. Wikipedia France

2. Science et Vie.com

3. Encyclopaediae Britannica

4. CNRS : sagascience (dossier évolution)

 

Images :

1. Chateaubriand vers la fin de sa vie (sources : repro-tableaux.com)

2. Charles Darwin (sources : American Philosophical Society)

3. la sélection naturelle (sources : sedna.radio-canada.ca)

4. Gregor Mendel (sources : wikidia)

5. tigron (sources : totems-scouts.be)

6. cœlacanthe (sources : dielette.fr)

7. fourmis rousses des bois (source : www.myrmecofourmis.fr) 

8. dessin d'artiste de la météorite du Yucatan (sources : www.astrosurf.com)

 

 

Mots-clés : Charles Darwin - adaptation continue - avantage sélectif - diversité génétique - mutation - Stephen J. Gould - Mendel - équilibres ponctués - niveau de sélection - Ernst Mayr - gènes architectes - taxon - cladistique - August Weissman - insectes sociaux

 

 

Sujets apparentés sur le blog (en sus de ceux déjà cités)

 

1. comportements animaux et Évolution

2. le mimétisme, une stratégie d'adaptation

3. parasitisme et Évolution

4. le voyage du Beagle et ses conséquences

5. spéciations et évolution des espèces

6. intelligence animale collective

 

 

Dernier sommaire général du blog : cliquer ICI

  

l'actualité du blog se trouve sur FACEBOOK

 

mise à jour : 20 mars 2023

Voir les commentaires

Publié le par cepheides
Publié dans :